

Distributed Cache Service

User Guide

Date 2023-06-06

Contents

1 Service Overview	1
1.1 What Is DCS?	1
1.2 Application Scenarios	3
1.3 DCS Instance Types	4
1.3.1 Single-Node Redis	4
1.3.2 Master/Standby Redis	6
1.3.3 Proxy Cluster Redis	9
1.3.4 Redis Cluster	13
1.3.5 Comparing DCS Redis Instance Types	15
1.4 DCS Instance Specifications	17
1.4.1 Redis 3.0 Instance Specifications	18
1.4.2 Redis 4.0 and 5.0 Instance Specifications	20
1.4.3 Redis 6.0 Instance Specifications	27
1.5 Command Compatibility	29
1.5.1 Redis 3.0 Commands	29
1.5.2 Redis 4.0 Commands	33
1.5.3 Redis 5.0 Commands	40
1.5.4 Redis 6.0 Commands	47
1.5.5 Web CLI Commands	49
1.5.6 Command Restrictions	53
1.5.7 Other Command Usage Restrictions	63
1.6 Disaster Recovery and Multi-Active Solution	63
1.7 Comparing Redis Versions	66
1.8 Comparing DCS and Open-Source Cache Services	68
1.9 Notes and Constraints	70
1.10 Basic Concepts	70
1.11 Billing	72
1.12 Permissions	72
1.13 Related Services	76
2 Permissions Management	. 79
2.1 Creating a User and Granting DCS Permissions	79
2.2 DCS Custom Policies	80
3 Accessing and Using DCS	.82

4 Getting Started	
4.1 Creating an Instance	84
4.1.1 Identifying Requirements	
4.1.2 Preparing Required Resources	
4.1.3 Creating a DCS Redis Instance	
4.2 Accessing an Instance	90
4.2.1 Restrictions	
4.2.2 Public Access to a DCS Redis 3.0 Instance	90
4.2.2.1 Step 1: Check Whether Public Access Is Supported	
4.2.2.2 Step 2: Enable Public Access for a DCS Redis Instance	
4.2.2.3 Step 3: Access a DCS Redis Instance in Windows	93
4.2.2.4 Step 3: Access a DCS Redis Instance in Linux	97
4.2.3 Accessing a DCS Redis Instance Through redis-cli	103
4.2.4 Access in Different Languages	106
4.2.4.1 Java	
4.2.4.1.1 Jedis	
4.2.4.1.2 Lettuce	109
4.2.4.1.3 Redisson	112
4.2.4.2 Lettuce Integration with Spring Boot	
4.2.4.3 Clients in Python	
4.2.4.4 go-redis	123
4.2.4.5 hiredis in C++	125
4.2.4.6 C#	
4.2.4.7 PHP	
4.2.4.7.1 phpredis	
4.2.4.7.2 Predis	
4.2.4.8 Node.js	133
4.2.5 Accessing a DCS Redis 4.0/5.0/6.0 Instance on the Console	136
4.3 Viewing Details of a DCS Instance	
5 Operating DCS Instances	140
5.1 Modifying DCS Instance Specifications	140
5.2 Restarting DCS Instances	
5.3 Deleting DCS Instances	147
5.4 Performing a Master/Standby Switchover for a DCS Instance	148
5.5 Clearing DCS Instance Data	149
5.6 Exporting DCS Instance List	
5.7 Command Renaming	150
6 Managing DCS Instances	151
6.1 Configuration Notice	
6.2 Modifying Configuration Parameters	
6.3 Modifying the Security Group	
6.4 Viewing Background Tasks	

6.5 Viewing Data Storage Statistics of a DCS Redis 3.0 Proxy Cluster Instance	
6.6 Managing Tags	
6.7 Managing Shards and Replicas	
6.8 Analyzing Big Keys and Hot Keys	
6.9 Scanning Expired Keys	
6.10 Managing IP Address Whitelist	
6.11 Viewing Redis Slow Queries	
6.12 Viewing Redis Run Logs	
6.13 Diagnosing an Instance	177
6.14 Configuring SSL	178
7 Backing Up and Restoring DCS Instances	180
7.1 Overview	
7.2 Configuring an Automatic Backup Policy	
7.3 Manually Backing Up a DCS Instance	
7.4 Restoring a DCS Instance	
7.5 Downloading a Backup File	
8 Migrating Data with DCS	
8.1 Introduction to Migration with DCS	
8.2 Importing Backup Files	
8.2.1 Importing Backup Files from an OBS Bucket	
8.2.2 Importing Backup Files from Redis	
8.3 Migrating Data Online	193
8.4 IP Switching	
9 Managing Passwords	202
9.1 DCS Instance Passwords	
9.2 Changing Instance Passwords	
9.3 Resetting Instance Passwords	
9.4 Changing Password Settings for DCS Redis Instances	
10 Parameter Templates	
10.1 Viewing Parameter Templates	
10.2 Creating a Custom Parameter Template	216
10.3 Modifying a Custom Parameter Template	
10.4 Deleting a Custom Parameter Template	234
11 Monitoring	235
11.1 DCS Metrics	
11.2 Common Metrics	
11.3 Viewing DCS Monitoring Metrics	
11.4 Configuring Alarm Rules for Critical Metrics	
12 Auditing	277
12.1 Operations That Can Be Recorded by CTS	

12.2 Viewing Traces on the CTS Console	280
13 Data Migration Guide	282
13.1 Overview	282
13.2 Migration Process	284
13.3 Migration Tools and Schemes	289
13.4 Migrating Data from Self-Hosted Redis to DCS	293
13.4.1 Online Migration of Self-Hosted Redis	293
13.4.2 Backup Migration of Self-Hosted Redis	297
13.4.3 Self-Hosted Redis Migration with redis-cli (AOF)	300
13.4.4 Self-Hosted Redis Migration with redis-cli (RDB)	301
13.4.5 Self-Hosted Redis Cluster Migration with redis-shake	303
13.5 Migrating Data Between DCS Instances	307
13.5.1 Online Migration Between DCS Redis Instances	307
13.5.2 Backup Migration Between Regions or Redis Versions	311
13.6 Migrating Redis Data from Another Cloud to DCS	314
13.6.1 Online Migration from Another Cloud	314
13.6.2 Backup Migration from Another Cloud	318
13.6.3 Online Migration with Rump	321
13.6.4 Offline Migration of Redis Cluster from Another Cloud with redis-shake	322
13.6.5 Online Full Migration of Redis from Another Cloud with redis-shake	324
13.7 Migrating Data from DCS to Self-Hosted Redis	
· · · · · · · · · · · · · · · · · · ·	
14 FAQs	331
14 FAQs 14.1 Instance Types/Versions	 331 331
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions.	331 331 331
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0.	331 331 331 333
14 FAQs. 14.1 Instance Types/Versions	331 331 331 333 337
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances?	331 331 331 333 333 337 343
14 FAQs. 14.1 Instance Types/Versions	331 331 333 333 337 343 344
14 FAQs. 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances? 14.1.5 How Do I View the Version of a DCS Redis Instance? 14.2 Client and Network Connection.	331 331 333 333 337 343 344 344
14 FAQs. 14.1 Instance Types/Versions	331 331 331 333 337 343 344 344 344
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances? 14.1.5 How Do I View the Version of a DCS Redis Instance? 14.2 Client and Network Connection. 14.2.1 Security Group Configurations. 14.2.2 Does DCS Support Access?	331 331 331 333 333 343 344 344 344 344
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances? 14.1.5 How Do I View the Version of a DCS Redis Instance? 14.2 Client and Network Connection. 14.2.1 Security Group Configurations. 14.2.2 Does DCS Support Access? 14.2.3 Does DCS Support Cross-VPC Access?	331 331 331 333 343 344 344 344 344 346 346
14 FAQs . 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances? 14.1.5 How Do I View the Version of a DCS Redis Instance? 14.2 Client and Network Connection. 14.2.1 Security Group Configurations. 14.2.2 Does DCS Support Access? 14.2.3 Does DCS Support Cross-VPC Access? 14.2.4 Why Is "(error) NOAUTH Authentication required" Displayed When I Access a DCS Redis Instance	331 331 331 333 343 344 344 344 344 346 tance? 347
14 FAQs 14.1 Instance Types/Versions 14.1.1 Comparing Versions 14.1.2 New Features of DCS for Redis 4.0 14.1.3 New Features of DCS for Redis 5.0 14.1.4 What Are the CPU Specifications of DCS Instances? 14.1.5 How Do I View the Version of a DCS Redis Instance? 14.2 Client and Network Connection 14.2.1 Security Group Configurations 14.2.2 Does DCS Support Access? 14.2.3 Does DCS Support Cross-VPC Access? 14.2.4 Why Is "(error) NOAUTH Authentication required" Displayed When I Access a DCS Redis Instance? 14.2.5 What Should I Do If Access to DCS Fails After Server Disconnects?	331 331 331 333 337 343 344 344 344 344 346 tance? 347 347
14 FAQs	331 331 331 331 333 343 344 344 344 346 346 tance? 347 347 347
14 FAQs	331 331 331 333 343 344 344 344 344 344 346 tance? 347 347 347 347 347
 14 FAQs	331 331 331 333 333 343 343 344 344 344 346 tance? 347 347 347 347 Redis
 14 FAQs. 14.1 Instance Types/Versions. 14.1.1 Comparing Versions. 14.1.2 New Features of DCS for Redis 4.0. 14.1.3 New Features of DCS for Redis 5.0. 14.1.4 What Are the CPU Specifications of DCS Instances?. 14.1.5 How Do I View the Version of a DCS Redis Instance?. 14.2 Client and Network Connection. 14.2.1 Security Group Configurations. 14.2.2 Does DCS Support Access?. 14.2.3 Does DCS Support Access?. 14.2.4 Why Is "(error) NOAUTH Authentication required" Displayed When I Access a DCS Redis Instance?. 14.2.5 What Should I Do If Access to DCS Fails After Server Disconnects?. 14.2.6 Why Do Requests Sometimes Time Out in Clients?. 14.2.7 What Should I Do If an Error Is Returned When I Use the Jedis Connection Pool?. 14.2.8 Why Is "ERR unknown command" Displayed When I Access a DCS Redis Instance Through a Client?. 14.2.9 How Do I Access a DCS Redis Instance Through Redis Deskton Manager? 	331 331 331 333 343 344 344 344 344 344 344 347 tance? 347 347 347 Redis 349 350
14 FAQs. 14.1 Instance Types/Versions	331 331 331 333 337 343 344 344 344 344 344 346 tance? 347 347 347 347 347 347 347 345 350 351

14.2.12 Can I Access DCS Instances in a Local Environment?	352
14.2.13 What Should Be Noted When Using Redis for Pub/Sub?	. 352
14.2.14 How Do I Troubleshoot Redis Connection Failures?	. 353
14.2.15 What Can I Do If Error "Cannot assign requested address" Is Returned When I Access Redis Us connect?	sing 354
14.2.16 Connection Pool Selection and Recommended Jedis Parameter Settings	355
14.2.17 Should I Use a Domain Name or an IP Address to Connect to a DCS Redis Instance?	. 359
14.2.18 Is the Read-only Address of a Master/Standby Instance Connected to the Master or Standby Node?	360
14.3 Redis Usage	. 360
14.3.1 What Are Shard and Replica Quantities?	360
14.3.2 Why Is CPU Usage of a DCS Redis Instance 100%?	. 361
14.3.3 Can I Change the VPC and Subnet for a DCS Redis Instance?	. 362
14.3.4 Why Aren't Security Groups Configured for DCS Redis 4.0/5.0/6.0 Instances?	362
14.3.5 Do DCS Redis Instances Limit the Size of a Key or Value?	. 362
14.3.6 Can I Obtain the Addresses of the Nodes in a Cluster DCS Redis Instance?	362
14.3.7 Why Is Available Memory Smaller Than Instance Cache Size?	. 363
14.3.8 How Do I Configure Read/Write Splitting for a Redis Cluster Instance?	. 363
14.3.9 Does DCS for Redis Support Multi-DB?	. 363
14.3.10 How Do I Know Whether an Instance Is Single-DB or Multi-DB?	. 364
14.3.11 Does DCS for Redis Support Redis Clusters?	. 364
14.3.12 What Is Sentinel?	. 365
14.3.13 Does DCS for Redis Support Sentinel?	365
14.3.14 What Is the Default Data Eviction Policy?	365
14.3.15 What Should I Do If an Error Occurs in Redis Exporter?	366
14.3.16 How Can I Secure My DCS Redis Instances?	. 366
14.3.17 Why Is Redisson Distributed Lock Not Supported by DCS Proxy Cluster Redis 3.0 Instances?	367
14.3.18 Can I Customize or Change the Port for Accessing a DCS Instance?	367
14.3.19 Can I Modify the Connection Addresses for Accessing a DCS Instance?	. 368
14.3.20 Why Do I Fail to Delete an Instance?	. 368
14.3.21 Does DCS Support Cross-AZ Deployment?	. 369
14.3.22 Why Does It Take a Long Time to Start a Cluster DCS Instance?	369
14.3.23 Does DCS for Redis Provide Backend Management Software?	. 369
14.3.24 Can I Recover Data from Deleted DCS Instances?	. 369
14.3.25 Does DCS for Redis Support SSL Encrypted Transmission?	. 369
14.3.26 How Do I Enable or Disable SSL for Public Access to a DCS Redis 3.0 Instance?	. 370
14.3.27 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Men Usage of Unused DCS Instances Greater Than Zero?	10ry 370
14.3.28 How Do I Estimate Redis Memory Usage?	. 371
14.3.29 Why Is the Capacity or Performance of a Shard of a Redis Cluster Instance Overloaded When That of the Instance Is Still Below the Bottleneck?	375
14.3.30 Does DCS Support External Extensions, Plug-ins, or Modules?	. 376
14.3.31 Why Is "Error in execution" Returned When I Access Redis?	376

14.3.32 Why Does a Key Disappear in Redis?	.376
14.3.33 Why Does an OOM Error Occur During a Redis Connection?	376
14.3.34 What Clients Can I Use for Redis Cluster in Different Programming Languages?	.377
14.3.35 Why Do I Need to Configure Timeout for Redis Cluster?	. 378
14.3.36 What Are the Constraints on Implementing Multi-DB on a Proxy Cluster Instance?	. 380
14.3.37 Can I Change the AZ for an Instance?	. 381
14.3.38 Explaining and Using Hash Tags	.383
14.3.39 Will Cached Data Be Retained After an Instance Is Restarted?	. 384
14.3.40 How Do I Buy a Multi-DB Proxy Cluster Instance?	384
14.4 Redis Commands	. 385
14.4.1 How Do I Clear Redis Data?	385
14.4.2 How Do I Find Specified Keys and Traverse All Keys?	385
14.4.3 Why is "permission denied" Returned When I Run the Keys Command in Web CLI?	.386
14.4.4 How Do I Disable High-Risk Commands?	.386
14.4.5 Does DCS for Redis Support Pipelining?	. 386
14.4.6 Does DCS for Redis Support the INCR and EXPIRE Commands?	. 386
14.4.7 Why Do I Fail to Execute Some Redis Commands?	. 386
14.4.8 Why Does a Redis Command Fail to Take Effect?	387
14.4.9 Is There a Time Limit on Executing Redis Commands? What Will Happen If a Command Times Out?	. 388
14.4.10 Can I Configure Redis Keys to Be Case-Insensitive?	.388
14.4.11 Can I View the Most Frequently Used Redis Commands?	. 388
14.4.12 Common Web CLI Errors	388
14.5 Instance Scaling and Upgrade	. 389
14.5.1 Can DCS Redis Instances Be Upgraded, for Example, from Redis 4.0 to 5.0?	389
14.5.2 Are Services Interrupted If Maintenance is Performed During the Maintenance Time Window?	. 389
14.5.3 Are Instances Stopped or Restarted During Specification Modification?	.389
14.5.4 Are Services Interrupted During Specification Modification?	.389
14.5.5 Why Can't I Modify Specifications for a DCS Redis Instance?	393
14.5.6 How Do I Reduce the Capacity of a DCS Instance?	.393
14.5.7 How Do I Handle an Error When I Use Lettuce to Connect to a Redis Cluster Instance After Specification Modification?	. 394
14.6 Monitoring and Alarm	.396
14.6.1 How Do I View Current Concurrent Connections and Maximum Connections of a DCS Redis	
Instance?	. 396
14.6.2 Does Redis Support Command Audits?	397
14.6.3 What Should I Do If the Monitoring Data of a DCS Redis Instance Is Abnormal?	.397
14.6.4 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Memory Usage of Unused DCS Instances Greater Than Zero?	ory . 397
14.6.5 Why Is Used Memory Greater Than Available Memory?	. 397
14.6.6 Why Does Bandwidth Usage Exceed 100%?	. 398
14.6.7 Why Is the Rejected Connections Metric Displayed?	398
14.6.8 Why Is Flow Control Triggered? How Do I Handle It?	.399

14.7 Data Backup, Export, and Migration	. 399
14.7.1 How Do I Export DCS Redis Instance Data?	399
14.7.2 Can I Export Backup Data of DCS Redis Instances to RDB Files Using the Console?	400
14.7.3 Why Are Processes Frequently Killed During Data Migration?	400
14.7.4 Is All Data in a DCS Redis Instance Migrated During Online Migration?	400
14.7.5 Does DCS Support Data Persistence? What Is the Impact of Persistence?	401
14.7.6 When Will AOF Rewrites Be Triggered?	. 401
14.7.7 Can I Migrate Data to Multiple Target Instances in One Migration Task?	402
14.7.8 How Do I Enable the SYNC and PSYNC Commands?	402
14.7.9 Why Does Migration Task Creation Fail?	. 402
14.7.10 Will the Same Keys Be Overwritten During Data Migration or Backup Import?	. 403
14.7.11 Online Migration with Rump	. 403
14.7.12 What Should I Consider When Transferring or Operating Data Between Different OSs?	404
14.7.13 Can I Migrate Data from a Multi-DB Source Redis Instance to a Cluster DCS Redis Instance?	404
14.7.14 How Can I Migrate Partial Data?	. 405
14.7.15 What Are the Constraints and Precautions for Migrating Redis Data to a Cluster Instance?	405
14.7.16 What Should I Consider for Online Migration?	. 406
14.7.17 Can I Perform Online Migration Without Any Service Interruption?	406
14.7.18 What If "Disconnecting timedout slave" and "overcoming of output buffer limits" Are Reporte on the Source Instance During Online Migration?	ed . 407
14.7.19 Why Is Memory of a DCS Redis Instance Unchanged After Data Migration Using Rump, Even No Error Message Is Returned?	lf 407
14.7.20 Can I Migrate Data from a Lower Redis Version to a Higher One?	408
14.8 Big/Hot Key Analysis and Expired Key Scan	. 408
14.8.1 What Are Big Keys and Hot Keys?	408
14.8.2 What Is the Impact of Big Keys or Hot Keys?	408
14.8.3 How Do I Avoid Big Keys and Hot Keys?	. 410
14.8.4 How Do I Analyze the Hot Keys of a DCS Redis 3.0 Instance?	411
14.8.5 How Do I Detect Big Keys and Hot Keys in Advance?	411
14.8.6 How Does DCS Delete Expired Keys?	. 412
14.8.7 How Long Are Keys Stored? How Do I Set Key Expiration?	. 413
14.9 Master/Standby Switchover	413
14.9.1 When Does a Master/Standby Switchover Occur?	. 413
14.9.2 How Does Master/Standby Switchover Affect Services?	. 414
14.9.3 Does the Client Need to Switch the Connection Address After a Master/Standby Switchover?	414
14.9.4 How Does Redis Master/Standby Replication Work?	. 414
14.10 Purchasing and Permissions	414
14.10.1 Why Do I Fail to Create a DCS Redis Instance?	414
14.10.2 Why Can't I View the Subnet and Security Group Information When Creating a DCS Instance?	P. 414
14.10.3 Why Can't I Select the Required Enterprise Project When Creating a DCS Instance?	415
14.10.4 Why Can't an IAM User See a New DCS Redis Instance?	415
15 Troubleshooting	417
······································	417

A Change History	428
15.5 Troubleshooting Data Migration Failures	
15.4 Troubleshooting High Bandwidth Usage of a DCS Redis Instance	
15.3 Troubleshooting High Memory Usage of a DCS Redis Instance	422
15.2 Troubleshooting High CPU Usage of a DCS Redis Instance	

Service Overview

1.1 What Is DCS?

Distributed Cache Service (DCS) is an online, distributed, in-memory cache service compatible with Redis. It is reliable, scalable, usable out of the box, and easy to manage, meeting your requirements for high read/write performance and fast data access.

• Usability out of the box

DCS provides single-node, master/standby, and cluster instances with specifications ranging from 128 MB to 1024 GB. DCS instances can be created with just a few clicks on the console, without requiring you to prepare servers.

DCS Redis 4.0/5.0/6.0 instances are containerized and can be created within seconds.

• Security and reliability

Instance data storage and access are securely protected through security management services, including Identity and Access Management (IAM), Virtual Private Cloud (VPC), Cloud Eye, and Cloud Trace Service (CTS).

Master/standby and cluster instances can be deployed within an availability zone (AZ) or across AZs.

• Auto scaling

DCS instances can be scaled up or down online, helping you control costs based on service requirements.

• Easy management

A web-based console is provided for you to perform various operations, such as restarting instances, modifying configuration parameters, and backing up and restoring data. RESTful application programming interfaces (APIs) are also provided for automatic instance management.

• Online migration

You can create a data migration task on the console to import backup files or migrate data online.

DCS for Redis

Redis is a storage system that supports multiple types of data structures, including key-value pairs. It can be used in such scenarios as data caching, event publication/subscription, and high-speed queuing, as described in **Application Scenarios**. Redis is written in ANSI C, supporting direct read/write of **strings**, **hashes**, **lists**, **sets**, **sorted sets**, and **streams**. Redis works with an in-memory dataset which can be persisted on disk.

DCS Redis instances can be customized based on your requirements.

Instance type	DCS for Redis provides the following types of instances to suit different service scenarios:				
	Single-node: Suitable for caching temporary data in low reliability scenarios. Single-node instances support highly concurrent read/ write operations, but do not support data persistence. Data will be deleted after instances are restarted.				
	Master/standby: Each master/standby instance runs on two nodes (one master and one standby). The standby node replicates data synchronously from the master node. If the master node fails, the standby node automatically becomes the master node.				
	Proxy Cluster: In addition to the native Redis cluster, a Proxy Cluster instance has proxies and load balancers. Load balancers implement load balancing. Different requests are distributed to different proxies to achieve high-concurrency. Each shard in the cluster has a master node and a standby node. If the master node is faulty, the standby node on the same shard is promoted to the master role to take over services.				
	Redis Cluster: Each Redis Cluster instance consists of multiple shards and each shard includes a master node and multiple replicas (or no replica at all). Shards are not visible to you. If the master node fails, a replica on the same shard takes over services. You can split read and write operations by writing to the master node and reading from the replicas. This improves the overall cache read/write performance.				
Instance specificat ion	DCS for Redis provides instances of different specifications, ranging from 128 MB to 1024 GB.				
Redis version	DCS instances are compatible with open-source Redis 3.0/4.0/5.0/6.0.				
Underlyin g architect ure	Deployed on large-specs VMs. 100,000 QPS at a single node.				

 Table 1-1 DCS Redis instance configuration

High availabili	Master/standby and cluster DCS Redis instances can be deployed across AZs in the same region with physically isolated power
ty (HA) and DR	supplies and networks.

For more information about open-source Redis, visit https://redis.io/.

1.2 Application Scenarios

Redis Application Scenarios

Many large-scale e-commerce websites and video streaming and gaming applications require fast access to large amounts of data that has simple data structures and does not need frequent join queries. In such scenarios, you can use Redis to achieve fast yet inexpensive access to data. Redis enables you to retrieve data from in-memory data stores instead of relying entirely on slower disk-based databases. In addition, you no longer need to perform additional management tasks. These features make Redis an important supplement to traditional diskbased databases and a basic service essential for internet applications receiving high-concurrency access.

Typical application scenarios of DCS for Redis are as follows:

1. E-commerce flash sales

E-commerce product catalogue, deals, and flash sales data can be cached to Redis.

For example, the high-concurrency data access in flash sales can be hardly handled by traditional relational databases. It requires the hardware to have higher configuration such as disk I/O. By contrast, Redis supports 100,000 QPS per node and allows you to implement locking using simple commands such as **SET**, **GET**, **DEL**, and **RPUSH** to handle flash sales.

For details about locking, see the "Implementing Distributed Locks" best practice.

2. Live video commenting

In live streaming, online user, gift ranking, and bullet comment data can be stored as sorted sets in Redis.

For example, bullet comments can be returned using the **ZREVRANGEBYSCORE** command. The **ZPOPMAX** and **ZPOPMIN** commands in Redis 5.0 can further facilitate message processing.

3. Game leaderboard

In online gaming, the highest ranking players are displayed and updated in real time. The leaderboard ranking can be stored as sorted sets, which are easy to use with up to 20 commands.

For details, see the "Ranking with Redis" best practice .

4. Social networking comments

In web applications, queries of post comments often involve sorting by time in descending order. As comments pile up, sorting becomes less efficient.

By using lists in Redis, a preset number of comments can be returned from the cache, rather than from disk, easing the load off the database and accelerating application responses.

1.3 DCS Instance Types

1.3.1 Single-Node Redis

Single-node DCS Redis instances are available in versions 3.0/4.0/5.0/6.0.

NOTE

You cannot upgrade the Redis version for an instance. For example, a single-node DCS Redis 4.0 instance cannot be upgraded to a single-node DCS Redis 5.0 instance. If your service requires the features of higher Redis versions, create a DCS Redis instance of a higher version and then migrate data from the old instance to the new one.

Features

1. Low system overhead and high QPS

Single-node instances do not support data synchronization or data persistence, reducing system overhead and supporting higher concurrency. QPS of single-node DCS Redis instances reaches up to 100,000.

2. Process monitoring and automatic fault recovery

With an HA monitoring mechanism, if a single-node DCS instance becomes faulty, a new process is started within 30 seconds to resume service provisioning.

3. Out-of-the-box usability and no data persistence

Single-node DCS instances can be used out of the box because they do not involve data loading. If your service requires high QPS, you can warm up the data beforehand to avoid strong concurrency impact on the backend database.

4. Low-cost and suitable for development and testing

Single-node instances are 40% cheaper than master/standby DCS instances, suitable for setting up development or testing environments.

In summary, single-node DCS instances support highly concurrent read/write operations, but do not support data persistence. Data will be deleted after instances are restarted. They are suitable for scenarios which do not require data persistence, such as database front-end caching, to accelerate access and ease the concurrency load off the backend. If the desired data does not exist in the cache, requests will go to the database. When restarting the service or the DCS instance, you can pre-generate cache data from the disk database to relieve pressure on the backend during startup.

Architecture

Figure 1-1 shows the architecture of single-node DCS Redis instances.

NOTE

To access a DCS Redis 3.0 instance, you must use port 6379. To access a DCS Redis 4.0/5.0/6.0 instance, you can customize the port. If no port is specified, the default port 6379 will be used. In the following architecture, port 6379 is used. If you have customized a port, replace **6379** with the actual port.

Architecture description:

• VPC

All server nodes of the instance run in the same VPC.

NOTE

For intra-VPC access, the client and the instance must be in the same VPC with specified security group rule configurations.

A DCS Redis 3.0 instance can be accessed from a VPC or over public networks. The client can be deployed outside of the VPC and access the instance through the elastic IP address (EIP) bound to the instance. Public access is not supported by DCS Redis 4.0/5.0/6.0 instances.

For details, see **Security Group ConfigurationsPublic Access to a DCS Redis 3.0 Instance**.

Application

The client of the instance, which is the application running on an Elastic Cloud Server (ECS).

DCS Redis instances are compatible with the Redis protocol, and can be accessed through open-source clients. For details about accessing DCS instances, see **Accessing an Instance**.

• DCS instance

A single-node DCS instance, which has only one node and one Redis process.

DCS monitors the availability of the instance in real time. If the Redis process becomes faulty, DCS starts a new process to resume service provisioning.

1.3.2 Master/Standby Redis

This section describes master/standby DCS Redis instances. Redis versions available for master/standby DCS Redis instances include Redis 3.0, 4.0, 5.0, and 6.0.

NOTE

You cannot upgrade the Redis version for an instance. For example, a master/standby DCS Redis 4.0 instance cannot be upgraded to a master/standby DCS Redis 5.0 instance. If your service requires the features of higher Redis versions, create a DCS Redis instance of a higher version and then migrate data from the old instance to the new one.

Features

Master/Standby DCS instances have higher availability and reliability than singlenode DCS instances.

Master/Standby DCS instances have the following features:

1. Data persistence and high reliability

By default, data persistence is enabled by both the master and the standby node of a master/standby instance.

The standby node of a DCS Redis 3.0 instance is invisible to you. Only the master node provides data read/write operations.

The standby node of a Redis 4.0, 5.0, or 6.0 basic edition instance is visible to you. You can read data from the standby node by connecting to it using the instance read-only address.

2. Data synchronization

Data in the master and standby nodes is kept consistent through incremental synchronization.

NOTE

After recovering from a network exception or node fault, master/standby instances perform a full synchronization to ensure data consistency.

3. Automatic master/standby switchover

If the master node becomes faulty, the instance is disconnected and unavailable for several seconds. The standby node takes over within 30 seconds without manual operations to resume stable services.

4. DR policies

Each master/standby DCS instance can be deployed across AZs with physically isolated power supplies and networks. Applications can also be deployed across AZs to achieve high availability for both data and applications.

Architecture of DCS Redis 3.0 Instances

Figure 1-2 shows the architecture of master/standby DCS Redis instances.

Figure 1-2 Master/Standby DCS instance architecture

Architecture description:

VPC

All server nodes of the instance run in the same VPC.

NOTE

For intra-VPC access, the client and the instance must be in the same VPC with specified security group rule configurations.

A DCS Redis 3.0 instance can be accessed from a VPC or over public networks. The client can be deployed outside of the VPC and access the instance through the elastic IP address (EIP) bound to the instance. Public access is not supported by DCS Redis 4.0, 5.0, and 6.0 instances.

For details, see **Security Group ConfigurationsPublic Access to a DCS Redis 3.0 Instance**.

Application

The Redis client of the instance, which is the application running on the ECS.

DCS Redis instances are compatible with the Redis protocol, and can be accessed through open-source clients. For details about accessing DCS instances, see **Accessing an Instance**.

• DCS instance

Indicates a master/standby DCS instance which has a master node and a standby node. By default, data persistence is enabled and data is synchronized between the two nodes.

DCS monitors the availability of the instance in real time. If the master node becomes faulty, the standby node becomes the master node and resumes service provisioning.

DCS Redis 3.0 instances are accessed through port 6379 by default. Port customization is not supported.

Architecture of Master/Standby DCS Redis 4.0/5.0/6.0 Instances

The following figure shows the architecture of a master/standby DCS Redis 4.0/5.0/6.0 instance.

Figure 1-3 Architecture of a master/standby DCS Redis 4.0/5.0/6.0 instance

Architecture description:

1. Each master/standby DCS Redis 4.0/5.0/6.0 instance has two connection addresses. When connecting to such an instance, you can use the read/write domain name address to connect to the master node or use the read-only domain name address to connect to the standby node.

The connection addresses can be obtained on the instance details page on the DCS console.

2. Master/standby DCS Redis 4.0/5.0/6.0 instances support Sentinels. Sentinels monitor the running status of the master and standby nodes. If the master node becomes faulty, a failover will be performed.

Sentinels are invisible to you and is used only in the service. For details about Sentinel, see **What Is Sentinel**?

- 3. A standby node has the same specifications as a master node. A master/ standby instance consists of a pair of master and standby nodes by default.
- 4. To access a DCS Redis 4.0/5.0/6.0 instance, you can customize the port. If no port is specified, the default port 6379 will be used. In the architecture diagram, port 6379 is used. If you have customized a port, replace **6379** with the actual port.

D NOTE

To implement read/write splitting using a master/standby instance, ensure that your client can distinguish between read and write requests. The client directs write requests to the read/write domain name and read requests to the read-only domain name.

Requests to the read-only domain name address may fail if the standby node of a master/standby DCS Redis 4.0/5.0/6.0 instance is faulty. For higher reliability and lower latency, do not use the read-only address.

1.3.3 Proxy Cluster Redis

DCS for Redis provides Proxy Cluster instances, which use Linux Virtual Server (LVS) and proxies to achieve high availability.

Proxy Cluster DCS Redis instances are compatible with Redis 3.0, 4.0, and 5.0.

- A Proxy Cluster instance can be connected in the same way that a single-node or master/standby instance is connected, without any special settings on the client. You can use the IP address or domain name of the instance, and do not need to know or use the proxy or shard addresses.
- You cannot upgrade the Redis version for an instance. For example, a Proxy Cluster DCS Redis 4.0 instance cannot be upgraded to a Proxy Cluster DCS Redis 5.0 instance. If your service requires the features of higher Redis versions, create a DCS Redis instance of a higher version and then migrate data from the old instance to the new one.

Proxy Cluster DCS Redis 3.0 Instances

Proxy Cluster DCS Redis 3.0 instances are compatible with **codis**. The specifications range from 64 GB to 1024 GB, meeting requirements for **millions of concurrent connections** and **massive data cache**. Distributed data storage and access is implemented by DCS, without requiring development or maintenance.

Each Proxy Cluster instance consists of load balancers, proxies, cluster managers, and **shards**.

Total Memory	Proxies	Shards
64 GB	3	8
128 GB	6	16
256 GB	8	32

Table 1-2 Specifications of Proxy Cluster DCS Redis 3.0 instances

Figure 1-4 Proxy Cluster DCS Redis instance architecture

Architecture description:

• VPC

All server nodes of the instance run in the same VPC.

D NOTE

For intra-VPC access, the client and the instance must be in the same VPC with specified security group rule configurations.

A DCS Redis 3.0 instance can be accessed from a VPC or over public networks. The client can be deployed outside of the VPC and access the instance through the elastic IP address (EIP) bound to the instance. Public access is not supported by DCS Redis 4.0, 5.0, and 6.0 instances.

For details, see **Security Group ConfigurationsPublic Access to a DCS Redis 3.0 Instance**.

• Application

The client used to access the instance.

DCS Redis instances can be accessed through open-source clients. For details about accessing DCS instances, see **Accessing an Instance**.

• LB-M/LB-S

The load balancers, which are deployed in master/standby HA mode. The connection addresses (**IP address:Port**) of the cluster DCS Redis instance are the addresses of the load balancers.

• Proxy

The proxy server used to achieve high availability and process highconcurrency client requests.

You can connect to a Proxy Cluster instance at the IP addresses of its proxies.

Redis shard

A shard of the cluster.

Each shard consists of a pair of master/standby nodes. If the master node becomes faulty, the standby node automatically takes over cluster services.

If both the master and standby nodes of a shard are faulty, the cluster can still provide services but the data on the faulty shard is inaccessible.

• Cluster manager

The cluster configuration managers, which store configurations and partitioning policies of the cluster. You cannot modify the information about the configuration managers.

Proxy Cluster DCS Redis 4.0 and 5.0 Instances

Proxy Cluster DCS Redis 4.0 and 5.0 instances are built based on open-source Redis 4.0 and 5.0 and compatible with **open source codis**. They provide multiple large-capacity specifications ranging from 4 GB to 1024 GB.

Table 1-3 lists the number of shards corresponding to different specifications. You can customize the shard size when creating an instance. Currently, the number of shards and replicas cannot be customized. By default, each shard has two replicas.

Memory per shard = Instance specification/Number of shards. For example, if a 48 GB instance has 6 shards, the size of each shard is 48 GB/6 = 8 GB.

Total Memory	Proxies	Shards	Memory per Shard (GB)
4 GB	3	3	1.33
8 GB	3	3	2.67
16 GB	3	3	5.33
24 GB	3	3	8
32 GB	3	3	10.67
48 GB	6	6	8
64 GB	8	8	8
96 GB	12	12	8
128 GB	16	16	8
192 GB	24	24	8
256 GB	32	32	8
384 GB	48	48	8

Table 1-3 Specifications of Proxy Cluster DCS Redis 4.0 and 5.0 instances

Total Memory	Proxies	Shards	Memory per Shard (GB)
512 GB	64	64	8
768 GB	96	96	8
1024 GB	128	128	8

Figure 1-5 Architecture of a Proxy Cluster DCS Redis 4.0 or 5.0 instance

Architecture description:

• VPC

All server nodes of the instance run in the same VPC.

D NOTE

The client and the cluster instance must be in the same VPC, and the instance whitelist must allow access from the client IP address.

Application

The client used to access the instance.

DCS Redis instances can be accessed through open-source clients. For details about accessing DCS instances in different languages, see Accessing an Instance.

• VPC endpoint service

You can configure your DCS Redis instance as a VPC endpoint service and access the instance at the VPC endpoint service address.

The IP address of the Proxy Cluster DCS Redis instance is the address of the VPC endpoint service.

• ELB

The load balancers, which are deployed in cluster HA mode.

• Proxy

The proxy server used to achieve high availability and process highconcurrency client requests.

You cannot connect to a Proxy Cluster instance at the IP addresses of its proxies.

• Redis cluster

A shard of the cluster.

Each shard consists of a pair of master/replica nodes. If the master node becomes faulty, the replica node automatically takes over cluster services.

If both the master and standby nodes of a shard are faulty, the cluster can still provide services but the data on the faulty shard is inaccessible.

1.3.4 Redis Cluster

Redis Cluster DCS instances use the native distributed implementation of Redis.

Redis Cluster DCS instances are compatible with Redis 4.0 and 5.0.

Read/write splitting is supported by configuring the client for Redis Cluster instances but is not supported for Proxy Cluster instances. **Read more** about DCS's support for read/write splitting.

NOTE

- You cannot upgrade the Redis version. For example, a Redis Cluster DCS Redis 4.0 instance cannot be upgraded to a Redis Cluster DCS Redis 5.0 instance. If your service requires the features of higher Redis versions, create a Redis Cluster instance of a higher version and then migrate data from the old instance to the new one.
- The method of connecting a client to a Redis Cluster instance is different from that of connecting a client to other types of instances. For details, see Accessing an Instance.

Redis Cluster

The Redis Cluster instance type provided by DCS is compatible with the **native Redis Cluster**, which uses smart clients and a distributed architecture to perform sharding.

 Table 1-4 lists the shard specification for different instance specifications.

When creating a Redis Cluster instance, you can customize the shard size. If the shard size is not customized, the default size is used. Size of a shard = Instance specification/Number of shards. For example, if a 48 GB instance has 6 shards, the size of each shard is 48 GB/6 = 8 GB.

Total Memory	Shards
4 GB/8 GB/16 GB/24 GB/32 GB	3
48 GB	6
64 GB	8
96 GB	12
128 GB	16
192 GB	24
256 GB	32
384 GB	48
512 GB	64
768 GB	96
1024 GB	128

Table 1-4 Specifications of Redis Cluster DCS instances

• Distributed architecture

Any node in a Redis Cluster can receive requests. Received requests are then redirected to the right node for processing. Each node consists of a subset of one master and one (by default) or multiple replicas. The master or replica roles are determined through an election algorithm.

Figure 1-6 Distributed architecture of Redis Cluster

• Presharding

There are 16,384 hash slots in each Redis Cluster. The mapping between hash slots and Redis nodes is stored in Redis Servers. To compute what is the hash slot of a given key, simply take the CRC16 of the key modulo 16384. Example command output

1.3.5 Comparing DCS Redis Instance Types

Table 1-5 describes the differences between different Redis instance types in terms of features and commands.

ltem	Single-Node or Master/ Standby	Proxy Cluster	Redis Cluster
Redis versio n compa tibility	Redis 3.0/4.0/5.0/6.0. You can select a version when creating an instance.	Redis 3.0/4.0/5.0. You can select a version when creating an instance.	Redis 4.0/5.0. You can select a version when creating an instance.
Suppor t	Keyspace notificationsPipelining	 Pipelining, MSET command, and MGET command SCAN command, KEYS command, and Redis Slow Log Pub/Sub 	 Keyspace notifications BRPOP, BLPOP, and BRPOPLPUSH commands Pub/Sub
Restric tions	Data persistence is not available for single-node instances.	 LUA script is restricted: All keys must be in the same hash slot to avoid errors. Hash tags are recommended. If a command contains multiple keys, the keys must be in the same hash slot to avoid errors. Hash tags are recommended. Keyspace notifications are not supported. 	 LUA script is restricted: All keys must be in the same hash slot. Hash tags are recommended. The client SDK must support Redis Cluster and be able to process MOVED errors. When you are using pipelining, MSET command, or MGET command, all keys must be in the same hash slot to avoid errors. Hash tags are recommended. When using keyspace notifications, establish connections with every Redis server and process events on each connection. When using a traversing or global command such as SCAN and KEYS, run the command on each Redis server.
Client	Any Redis client	Any Redis client (no need to support the Redis Cluster protocol)	Any client that supports the Redis Cluster protocol

Table 1-5 Differences be	etween DCS	instance types
--------------------------	------------	----------------

ltem	Single-Node or Master/ Standby	Proxy Cluster	Redis Cluster
Disabl ed comm ands	Command Compatibility lists commands disabled in single-node and master/ standby instances.	Command Compatibility lists commands disabled in Proxy Cluster instances.	Command Compatibility lists commands disabled in Redis Cluster instances.
Replic as	A single-node instance has only one replica. A master/ standby instance has two replicas. Currently, the number of replicas cannot be customized for master/ standby DCS Redis 3.0 and 6.0 instances. By default, a master/standby instance has a master node and a standby node. When creating a master/standby DCS Redis 4.0 or 5.0 instance, you can customize the number of replicas, with one of them being the master.	Each shard in the cluster has and can only have two replicas, with one of them being the master.	By default, each shard in the cluster has two replicas. The number of replicas can be customized, with one of them being the master. When creating an instance, you can set the replica quantity to one, indicating that the instance only has the master node. In this case, high data reliability cannot be ensured.

1.4 DCS Instance Specifications

1.4.1 Redis 3.0 Instance Specifications

This section describes DCS Redis 3.0 instance specifications, including the total memory, available memory, maximum number of connections allowed, maximum/ assured bandwidth, and reference performance.

The following metrics are related to the instance specifications:

- Used memory: You can check the memory usage of an instance by viewing the **Memory Usage** and **Used Memory** metrics.
- Maximum connections: The maximum number of connections allowed is the maximum number of clients that can be connected to an instance. To check the number of connections to an instance, view the **Connected Clients** metric.
- QPS represents queries per second, which is the number of commands processed per second.

NOTE

- Single-node, master/standby, and Proxy Cluster types are available.
- Only the x86 architecture is supported. The Arm architecture is not supported.

Single-Node Instances

For each single-node DCS Redis instance, the available memory is less than the total memory because some memory is reserved for system overheads, as shown in the following table.

Total Memory (GB)	Available Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performan ce (QPS)	Specifica tion Code (spec_co de in the API)
2	1.5	5000/50,000	42/512	50,000	dcs.single _node
4	3.2	5000/50,000	64/1536	100,000	dcs.single _node
8	6.8	5000/50,000	64/1536	100,000	dcs.single _node
16	13.6	5000/50,000	85/3072	100,000	dcs.single _node
32	27.2	5000/50,000	85/3072	100,000	dcs.single _node
64	58.2	5000/60,000	128/5120	100,000	dcs.single _node

Table	1-6	Specifications	of single-node	DCS Redis 3	0 instances
lance	1-0	Specifications	of single-noue	DC2 Keuis 3	.0 mistances

Master/Standby Instances

For each master/standby DCS Redis instance, the available memory is less than that of a single-node DCS Redis instance because some memory is reserved for data persistence, as shown in the following table. The available memory of a master/standby instance can be adjusted to support background tasks such as data persistence and master/standby synchronization.

Total Memory (GB)	Available Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performa nce (QPS)	Specificatio n Code (spec_code in the API)
2	1.5	5000/50,00 0	42/512	50,000	dcs.master_s tandby
4	3.2	5000/50,00 0	64/1536	100,000	dcs.master_s tandby
8	6.4	5000/50,00 0	64/1536	100,000	dcs.master_s tandby
16	12.8	5000/50,00 0	85/3072	100,000	dcs.master_s tandby
32	25.6	5000/50,00 0	85/3072	100,000	dcs.master_s tandby
64	51.2	5000/60,00 0	128/5120	100,000	dcs.master_s tandby

Table 1-7 Specifications of master/standby DCS Redis 3.0 instances

Proxy Cluster Instances

In addition to larger memory, cluster instances feature more connections allowed, higher bandwidth allowed, and more QPS than single-node and master/standby instances.

Table 1-8 Specifications of Proxy Cluster DCS Redis 3.0 instances

Specificati on (GB)	Available Memory (GB)	Max. Connectio ns (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performanc e (QPS)	Specificati on Code (spec_code in the API)
64	64	90,000/90,0 00	600/5120	500,000	dcs.cluster

Specificati on (GB)	Available Memory (GB)	Max. Connectio ns (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performanc e (QPS)	Specificati on Code (spec_code in the API)
128	128	180,000/18 0,000	600/5120	500,000	dcs.cluster
256	256	240,000/24 0,000	600/5120	500,000	dcs.cluster

1.4.2 Redis 4.0 and 5.0 Instance Specifications

This section describes DCS Redis 4.0 and 5.0 instance specifications, including the total memory, available memory, maximum number of connections allowed, maximum/assured bandwidth, and reference performance.

The following metrics are related to the instance specifications:

- Used memory: You can check the memory usage of an instance by viewing the **Memory Usage** and **Used Memory** metrics.
- Maximum connections: The maximum number of connections allowed is the maximum number of clients that can be connected to an instance. To check the number of connections to an instance, view the Connected Clients metric.
- QPS represents queries per second, which is the number of commands processed per second.
- Bandwidth: You can view the **Flow Control Times** metric to check whether the bandwidth has exceeded the limit.

NOTE

- Single-node, master/standby, Proxy Cluster, and Redis Cluster instance types are available.
- Only the x86 architecture is supported. The Arm architecture is not supported.

Single-Node Instances

 Table 1-9 Specifications of single-node DCS Redis 4.0 or 5.0 instances

Total Memory (GB)	Available Memory (GB)	Max. Connections (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referen ce Perform ance (QPS)	Specificat ion Code (spec_cod e in the API)
0.125	0.125	10,000/10,000	40/40	80,000	redis.singl e.xu1.tiny. 128
0.25	0.25	10,000/10,000	80/80	80,000	redis.singl e.xu1.tiny. 256
0.5	0.5	10,000/10,000	80/80	80,000	redis.singl e.xu1.tiny. 512
1	1	10,000/50,000	80/80	80,000	redis.singl e.xu1.larg e.1
2	2	10,000/50,000	128/128	80,000	redis.singl e.xu1.larg e.2
4	4	10,000/50,000	192/192	80,000	redis.singl e.xu1.larg e.4
8	8	10,000/50,000	192/192	100,000	redis.singl e.xu1.larg e.8
16	16	10,000/50,000	256/256	100,000	redis.singl e.xu1.larg e.16
24	24	10,000/50,000	256/256	100,000	redis.singl e.xu1.larg e.24
32	32	10,000/50,000	256/256	100,000	redis.singl e.xu1.larg e.32
48	48	10,000/50,000	256/256	100,000	redis.singl e.xu1.larg e.48

Total Memory (GB)	Available Memory (GB)	Max. Connections (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referen ce Perform ance (QPS)	Specificat ion Code (spec_cod e in the API)
64	64	10,000/50,000	384/384	100,000	redis.singl e.xu1.larg e.64

Master/Standby Instances

By default, a master/standby instance has two replicas (including the master). There is one master node.

Number of IP addresses occupied by a master/standby instance = Number of master nodes x Number of replicas. For example:

2 replicas: Number of occupied IP addresses = $1 \times 2 = 2$

3 replicas: Number of occupied IP addresses = $1 \times 3 = 3$

The following table lists the specification codes (**spec_code**) when there are two default replicas. Change the replica quantity in the specification codes based on the actual number of replicas. For example, if an 8 GB master/standby x86-based instance has two replicas, its specification code is redis.ha.xu1.large. **r2**.8. If it has three replicas, its specification code is redis.ha.xu1.large. **r3**.8.

Total Memory (GB)	Available Memory (GB)	Max. Connectio ns (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referenc e Perform ance (QPS)	Specificatio n Code (spec_code in the API)
0.125	0.125	10,000/10, 000	40/40	80,000	redis.ha.xu1. tiny.r2.128
0.25	0.25	10,000/10, 000	80/80	80,000	redis.ha.xu1. tiny.r2.256
0.5	0.5	10,000/10, 000	80/80	80,000	redis.ha.xu1. tiny.r2.512
1	1	10,000/50, 000	80/80	80,000	redis.ha.xu1. large.r2.1
2	2	10,000/50, 000	128/128	80,000	redis.ha.xu1. large.r2.2

Table 1-10 Specifications of master/standby DCS Redis 4.0 or 5.0 instances

Total Memory (GB)	Available Memory (GB)	Max. Connectio ns (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referenc e Perform ance (QPS)	Specificatio n Code (spec_code in the API)
4	4	10,000/50, 000	192/192	80,000	redis.ha.xu1. large.r2.4
8	8	10,000/50, 000	192/192	100,000	redis.ha.xu1. large.r2.8
16	16	10,000/50, 000	256/256	100,000	redis.ha.xu1. large.r2.16
24	24	10,000/50, 000	256/256	100,000	redis.ha.xu1. large.r2.24
32	32	10,000/50, 000	256/256	100,000	redis.ha.xu1. large.r2.32
48	48	10,000/50, 000	256/256	100,000	redis.ha.xu1. large.r2.48
64	64	10,000/50, 000	384/384	100,000	redis.ha.xu1. large.r2.64

Proxy Cluster Instances

The number of replicas of a Proxy Cluster instance cannot be customized. By default, each shard has two replicas. For details about the default number of shards, see **Table 1-3**. When buying an instance, you can customize the size of each shard.

Table 1-11 Specifications of Proxy Cluster DCS Redis 4.0 and 5.0 instances

Total Memor y (GB)	Availabl e Memory (GB)	Max. Connecti ons (Default/ Limit) (Count)	Assured/ Maximu m Bandwidt h (Mbit/s)	Reference Performance (QPS)	Specification Code (spec_code in the API)
4	4	20,000/2 0,000	1000/100 0	240,000	redis.proxy.xu1.lar ge.4
8	8	30,000/3 0,000	2000/200 0	240,000	redis.proxy.xu1.lar ge.8
16	16	30,000/3 0,000	3072/307 2	240,000	redis.proxy.xu1.lar ge.16

Total Memor y (GB)	Availabl e Memory (GB)	Max. Connecti ons (Default/ Limit) (Count)	Assured/ Maximu m Bandwidt h (Mbit/s)	Reference Performance (QPS)	Specification Code (spec_code in the API)
24	24	30,000/3 0,000	3072/307 2	240,000	redis.proxy.xu1.lar ge.24
32	32	30,000/3 0,000	3072/307 2	240,000	redis.proxy.xu1.lar ge.32
48	48	60,000/6 0,000	4608/460 8	480,000	redis.proxy.xu1.lar ge.48
64	64	80,000/8 0,000	6144/614 4	640,000	redis.proxy.xu1.lar ge.64
96	96	120,000/ 120,000	9216/921 6	960,000	redis.proxy.xu1.lar ge.96
128	128	160,000/ 160,000	10,000/10 ,000	1,280,000	redis.proxy.xu1.lar ge.128
192	192	240,000/ 240,000	10,000/10 ,000	1,920,000	redis.proxy.xu1.lar ge.192
256	256	320,000/ 320,000	10,000/10 ,000	> 2,000,000	redis.proxy.xu1.lar ge.256
384	384	480,000/ 480,000	10,000/10 ,000	> 2,000,000	redis.proxy.xu1.lar ge.384
512	512	500,000/ 500,000	10,000/10 ,000	> 2,000,000	redis.proxy.xu1.lar ge.512
768	768	500,000/ 500,000	10,000/10 ,000	> 2,000,000	redis.proxy.xu1.lar ge.768
1024	1024	500,000/ 500,000	10,000/10 ,000	> 2,000,000	redis.proxy.xu1.lar ge.1024

Redis Cluster Instances

In addition to larger memory, Redis Cluster instances feature more connections allowed, higher bandwidth allowed, and more QPS than single-node and master/ standby instances.

- Specification name: The following table only lists the specification names of 2-replica x86-based instances. The specification names reflect the number of replicas, for example, redis.cluster.xu1.large.r2.8 (x86 | 2 replicas | 8 GB) and redis.cluster.xu1.large.r3.8 (x86 | 3 replicas | 8 GB).
- IP addresses: Number of occupied IP addresses = Number of shards x Number of replicas. For example:

4 GB | Redis Cluster | 3 replicas: Number of occupied IP addresses = $3 \times 3 = 9$

• Available memory per node = Instance available memory/Master node quantity. For example:

For example, a 24 GB instance has 24 GB available memory and 3 master nodes. The available memory per node is 24/3 = 8 GB.

• Maximum connections limit per node = Maximum connections limit/Master node quantity For example:

For example, a 4 GB instance has 3 master nodes and the maximum connections limit is 150,000. The maximum connections limit per node = 150,000/3 = 50,000.

Total Memory (GB)	Available Memory (GB)	Shards (Maste r Nodes)	Max. Connecti ons (Default /Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referen ce Perform ance (QPS)	Specific ation Code (spec_c ode in the API)
4	4	3	30,000 /150,000	2304/2304	240,000	redis.cl uster.xu 1.large. r2.4
8	8	3	30,000 /150,000	2304/2304	240,000	redis.cl uster.xu 1.large. r2.8
16	16	3	30,000 /150,000	2304/2304	240,000	redis.cl uster.xu 1.large. r2.16
24	24	3	30,000 /150,000	2304/2304	300,000	redis.cl uster.xu 1.large. r2.24
32	32	3	30,000 /150,000	2304/2304	300,000	redis.cl uster.xu 1.large. r2.32
48	48	6	60,000 /300,000	4608/4608	> 300,000	redis.cl uster.xu 1.large. r2.48

Table 1-12 Specifications of Redis Cluster DCS Redis 4.0 or 5.0 instance	es
--	----

Total Memory (GB)	Available Memory (GB)	Shards (Maste r Nodes)	Max. Connecti ons (Default /Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Referen ce Perform ance (QPS)	Specific ation Code (spec_c ode in the API)
64	64	8	80,000 /400,000	6144/6144	500,000	redis.cl uster.xu 1.large. r2.64
96	96	12	120,000 /600,000	9216/9216	> 500,000	redis.cl uster.xu 1.large. r2.96
128	128	16	160,000 /800,000	12,288/12,2 88	1,000,00 0	redis.cl uster.xu 1.large. r2.128
192	192	24	240,000 / 1,200,00 0	18,432/18,4 32	> 1,000,00 0	redis.cl uster.xu 1.large. r2.192
256	256	32	320,000 / 1,600,00 0	24,576/24,5 76	> 2,000,00 0	redis.cl uster.xu 1.large. r2.256
384	384	48	480,000 / 2,400,00 0	36,864/36,8 64	> 2,000,00 0	redis.cl uster.xu 1.large. r2.384
512	512	64	640,000 / 3,200,00 0	49,152/49,1 52	> 2,000,00 0	redis.cl uster.xu 1.large. r2.512
768	768	96	960,000 / 4,800,00 0	73,728/73,7 28	> 2,000,00 0	redis.cl uster.xu 1.large. r2.768
1024	1024	128	1,280,00 0 / 6,400,00 0	98,304/98,3 04	> 2,000,00 0	redis.cl uster.xu 1.large. r2.1024

1.4.3 Redis 6.0 Instance Specifications

This section describes DCS Redis 6.0 instance specifications, including the total memory, available memory, maximum number of connections allowed, maximum/ assured bandwidth, and reference performance.

The following metrics are related to the instance specifications:

- Used memory: You can check the memory usage of an instance by viewing the **Memory Usage** and **Used Memory** metrics.
- Maximum connections: The maximum number of connections allowed is the maximum number of clients that can be connected to an instance. To check the number of connections to an instance, view the **Connected Clients** metric.
- QPS represents queries per second, which is the number of commands processed per second.
- Bandwidth: You can view the **Flow Control Times** metric to check whether the bandwidth has exceeded the limit.

Currently, DCS for Redis 6.0 supports single-node and master/standby instances based on x86 CPUs.

Single-Node

Total Memo ry (GB)	Availabl e Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performa nce (QPS)	Specification Code (spec_code in the API)
0.125	0.125	10,000/10,0 00	40/40	80,000	redis.single.xu1.tin y.128
0.25	0.25	10,000/10,0 00	80/80	80,000	redis.single.xu1.tin y.256
0.5	0.5	10,000/10,0 00	80/80	80,000	redis.single.xu1.tin y.512
1	1	10,000/50,0 00	80/80	80,000	redis.single.xu1.lar ge.1
2	2	10,000/50,0 00	128/128	80,000	redis.single.xu1.lar ge.2
4	4	10,000/50,0 00	192/192	80,000	redis.single.xu1.lar ge.4

Table 1-13	Specifications	of single-node	DCS Redis 6.0) instances	
Total Memo ry (GB)	Availabl e Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performa nce (QPS)	Specification Code (spec_code in the API)
-----------------------------	---------------------------------	--	--	---------------------------------------	---
8	8	10,000/50,0 00	192/192	100,000	redis.single.xu1.lar ge.8
16	16	10,000/50,0 00	256/256	100,000	redis.single.xu1.lar ge.16
24	24	10,000/50,0 00	256/256	100,000	redis.single.xu1.lar ge.24
32	32	10,000/50,0 00	256/256	100,000	redis.single.xu1.lar ge.32
48	48	10,000/50,0 00	256/256	100,000	redis.single.xu1.lar ge.48
64	64	10,000/50,0 00	384/384	100,000	redis.single.xu1.lar ge.64

Master/Standby

 Table 1-14 Specifications of master/standby DCS Redis 6.0 instances

Total Memo ry (GB)	Availabl e Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performa nce (QPS)	Specification Code (spec_code in the API)
0.125	0.125	10,000/10,0 00	40/40	80,000	redis.ha.xu1.tiny.r2 .128
0.25	0.25	10,000/10,0 00	80/80	80,000	redis.ha.xu1.tiny.r2 .256
0.5	0.5	10,000/10,0 00	80/80	80,000	redis.ha.xu1.tiny.r2 .512
1	1	10,000/50,0 00	80/80	80,000	redis.ha.xu1.large.r 2.1
2	2	10,000/50,0 00	128/128	80,000	redis.ha.xu1.large.r 2.2
4	4	10,000/50,0 00	192/192	80,000	redis.ha.xu1.large.r 2.4

Total Memo ry (GB)	Availabl e Memory (GB)	Max. Connection s (Default/ Limit) (Count)	Assured/ Maximum Bandwidth (Mbit/s)	Reference Performa nce (QPS)	Specification Code (spec_code in the API)
8	8	10,000/50,0 00	192/192	100,000	redis.ha.xu1.large.r 2.8
16	16	10,000/50,0 00	256/256	100,000	redis.ha.xu1.large.r 2.16
24	24	10,000/50,0 00	256/256	100,000	redis.ha.xu1.large.r 2.24
32	32	10,000/50,0 00	256/256	100,000	redis.ha.xu1.large.r 2.32
48	48	10,000/50,0 00	256/256	100,000	redis.ha.xu1.large.r 2.48
64	64	10,000/50,0 00	384/384	100,000	redis.ha.xu1.large.r 2.64

1.5 Command Compatibility

1.5.1 Redis 3.0 Commands

DCS for Redis 3.0 is developed based on Redis 3.0.7 and is compatible with opensource protocols and commands.

This section describes DCS for Redis 3.0's compatibility with Redis commands, including supported commands, disabled commands, unsupported scripts and commands of later Redis versions, and restrictions on command usage. For more information about the command syntax, visit the **Redis official website**.

DCS for Redis instances support most Redis commands, which are listed in **Commands Supported by DCS for Redis 3.0**. Any client compatible with the Redis protocol can access DCS.

- For security purposes, some Redis commands are disabled in DCS, as listed in Commands Disabled by DCS for Redis 3.0.
- Some Redis commands are supported by cluster DCS instances for multi-key operations in the same slot. For details, see **Command Restrictions**.
- Some Redis commands have usage restrictions, which are described in Other Command Usage Restrictions.

Commands Supported by DCS for Redis 3.0

The following lists commands supported by DCS for Redis 3.0.

D NOTE

- Commands available since later Redis versions are not supported by earlier-version instances. Run a command on redis-cli to check whether it is supported by DCS for Redis. If the message "(error) ERR unknown command" is returned, the command is not supported.
- The following commands listed in the tables are not supported by Proxy Cluster instances:
 - List group: BLPOP, BRPOP, and BRPOPLRUSH
 - CLIENT commands in the Server group: CLIENT KILL, CLIENT GETNAME, CLIENT LIST, CLIENT SETNAME, CLIENT PAUSE, and CLIENT REPLY.
 - Server group: MONITOR
 - Key group: RANDOMKE (for old Proxy Cluster instances)

Keys	String	Hash	List	Set	Sorted Set	Server
DEL	APPEND	HDEL	BLPOP	SADD	ZADD	FLUSHALL
DUMP	BITCOUN T	HEXIS TS	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOP LRUSH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGET ALL	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINC RBY	LINSER T	SINTER	ZRANGE	INFO
PERSIST	DECRBY	HINC RBYF LOAT	LLEN	SINTERS TORE	ZRANGEBYS CORE	KEYS
PTTL	GET	HKEY S	LPOP	SISMEM BER	ZRANK	CLIENT KILL
RANDO MKEY	GETRANG E	HMG ET	LPUSH X	SMEMBE RS	ZREMRANGE BYRANK	CLIENT LIST
RENAME	GETSET	HMSE T	LRANG E	SMOVE	ZREMRANGE BYCORE	CLIENT GETNAME
RENAME NX	INCR	HSET	LREM	SPOP	ZREVRANGE	CLIENT SETNAME
RESTOR E	INCRBY	HSET NX	LSET	SRAND MEMBE R	ZREVRANGE BYSCORE	CONFIG GET
SORT	INCRBYFL OAT	HVAL S	LTRIM	SREM	ZREVRANK	MONITOR

Table 1-15 Commands supported by DCS Redis 3.0 instances 1

Keys	String	Hash	List	Set	Sorted Set	Server
TTL	MGET	HSCA N	RPOP	SUNION	ZSCORE	SLOWLOG
ТҮРЕ	MSET	-	RPOPL PU	SUNION STORE	ZUNIONSTO RE	ROLE
SCAN	MSETNX	-	RPOPL PUSH	SSCAN	ZINTERSTOR E	-
OBJECT	PSETEX	-	RPUSH	-	ZSCAN	-
-	SET	-	RPUSH X	-	ZRANGEBYL EX	-
-	SETBIT	-	-	-	-	-
-	SETEX	-	-	-	-	-
-	SETNX	-	-	-	-	-
-	SETRANG E	-	-	-	-	-
-	STRLEN	-	-	-	-	-

Table 1-16 Commands supported by DCS Redis 3.0 instances 2

HyperLogl og	Pub/Sub	Transacti ons	Connecti on	Scripting	Geo
PFADD	PSUBSCRI BE	DISCARD	AUTH	EVAL	GEOADD
PFCOUNT	PUBLISH	EXEC	ECHO	EVALSHA	GEOHASH
PFMERGE	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS
-	PUNSUBS CRIBE	UNWATC H	QUIT	SCRIPT FLUSH	GEODIST
-	SUBSCRIB E	WATCH	SELECT	SCRIPT KILL	GEORADIUS
-	UNSUBSC RIBE	-	-	SCRIPT LOAD	GEORADIUSBY MEMBER

Commands Disabled by DCS for Redis 3.0

The following lists commands disabled by DCS for Redis 3.0.

Table 1-17 Redis commands	disabled i	in single-node	and master	r/standby	Redis 3.0
instances					

Keys	Server
MIGRATE	SLAVEOF
-	SHUTDOWN
-	LASTSAVE
-	DEBUG commands
-	COMMAND
-	SAVE
-	BGSAVE
-	BGREWRITEAOF

Table 1-18 Redis commands disabled in Proxy Cluster Redis 3.0 instances

Keys	Server	List	Transactio ns	Connecti on	Cluste r	codis
MIGRA TE	SLAVEOF	BLPOP	DISCARD	SELECT	CLUST ER	TIME
MOVE	SHUTDO WN	BRPOP	EXEC	-	-	SLOTSINF O
-	LASTSAVE	BRPOPL PUSH	MULTI	-	-	SLOTSDEL
-	DEBUG command s	-	UNWATCH	-	-	SLOTSMG RTSLOT
-	COMMAN D	-	WATCH	-	-	SLOTSMG RTONE
-	SAVE	-	-	-	-	SLOTSCHE CK
-	BGSAVE	-	-	-	-	SLOTSMG RTTAGSLO T
-	BGREWRIT EAOF	-	-	-	-	SLOTSMG RTTAGON E
-	SYNC	-	-	-	-	-
-	PSYNC	-	-	-	-	-

Keys	Server	List	Transactio ns	Connecti on	Cluste r	codis
-	MONITOR	-	-	-	-	-
-	CLIENT command s	-	-	-	-	-
-	OBJECT	-	-	-	-	-
-	ROLE	-	-	-	-	-

1.5.2 Redis 4.0 Commands

DCS for Redis 4.0 is developed based on Redis 4.0.14 and is compatible with opensource protocols and commands.

This section describes DCS for Redis 4.0's compatibility with Redis commands, including supported and disabled commands. For more information about the command syntax, visit the **Redis official website**.

DCS for Redis instances support most Redis commands, which are listed in **Commands Supported by DCS for Redis 4.0**. Any client compatible with the Redis protocol can access DCS.

- For security purposes, some Redis commands are disabled in DCS, as listed in Commands Disabled by DCS for Redis 4.0.
- Some Redis commands are supported by cluster DCS instances for multi-key operations in the same slot. For details, see **Command Restrictions**.
- Some Redis commands have usage restrictions, which are described in **Other Command Usage Restrictions**.

Commands Supported by DCS for Redis 4.0

Table 1-19 and **Table 1-20** list the Redis commands supported by single-node, master/standby, and Redis Cluster DCS Redis 4.0 instances.

Table 1-21 and **Table 1-22** list the Redis commands supported by Proxy Cluster DCS Redis 4.0 instances.

NOTE

- Commands available since later Redis versions are not supported by earlier-version instances. Run a command on redis-cli to check whether it is supported by DCS for Redis. If the message "(error) ERR unknown command" is returned, the command is not supported.
- For DCS Redis 4.0 instances in the Redis Cluster mode, ensure that all commands in a pipeline are executed on the same shard.

Table 1-19 Commands supported by single-node, master/standby, and Redis Cluster DCS Redis 4.0 instances (1)

Keys	String	Hash	List	Set	Sorted Set	Server
DEL	APPEN D	HDEL	BLPOP	SADD	ZADD	FLUSHALL
DUMP	BITCOU NT	HEXIST S	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOP LRUSH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGETAL L	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINCRB Y	LINSER T	SINTER	ZRANGE	INFO
PERSIST	DECRBY	HINCRB YFLOAT	LLEN	SINTERS TORE	ZRANGEBYS CORE	KEYS
PTTL	GET	HKEYS	LPOP	SISMEM BER	ZRANK	CLIENT KILL
RANDO MKEY	GETRA NGE	HMGET	LPUSH X	SMEMBE RS	ZREMRANGE BYRANK	CLIENT LIST
RENAME	GETSET	HMSET	LRANG E	SMOVE	ZREMRANGE BYCORE	CLIENT GETNAME
RENAME NX	INCR	HSET	LREM	SPOP	ZREVRANGE	CLIENT SETNAME
RESTOR E	INCRBY	HSETN X	LSET	SRAND MEMBE R	ZREVRANGE BYSCORE	CONFIG GET
SORT	INCRBY FLOAT	HVALS	LTRIM	SREM	ZREVRANK	MONITOR
TTL	MGET	HSCAN	RPOP	SUNION	ZSCORE	SLOWLOG
TYPE	MSET	HSTRLE N	RPOPL PU	SUNION STORE	ZUNIONSTO RE	ROLE
SCAN	MSETN X	HLEN	RPOPL PUSH	SSCAN	ZINTERSTOR E	SWAPDB
OBJECT	PSETEX	-	RPUSH	-	ZSCAN	MEMORY
PEXPIRE	SET	-	RPUSH X	-	ZRANGEBYL EX	CONFIG
PEXPIRE AT	SETBIT	-	LPUSH	-	ZLEXCOUNT	-

Keys	String	Hash	List	Set	Sorted Set	Server
-	SETEX	-	-	-	ZREMRANGE BYSCORE	-
-	SETNX	-	-	-	ZREM	-
-	SETRAN GE	-	-	-	-	-
-	STRLEN	-	-	-	-	-
-	BITFIEL D	-	-	-	-	-

Table 1-20 Commands supported by single-node	, master/standby, and Redis
Cluster DCS Redis 4.0 instances (2)	

HyperLogl og	Pub/Sub	Transacti ons	Connecti on	Scripting	Geo
PFADD	PSUBSCRI BE	DISCARD	AUTH	EVAL	GEOADD
PFCOUNT	PUBLISH	EXEC	ECHO	EVALSHA	GEOHASH
PFMERGE	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS
-	PUNSUBS CRIBE	UNWATC H	QUIT	SCRIPT FLUSH	GEODIST
_	SUBSCRIB E	WATCH	SELECT (not supporte d by Redis Cluster instances)	SCRIPT KILL	GEORADIUS
-	UNSUBSC RIBE	-	-	SCRIPT LOAD	GEORADIUSBY MEMBER

Table 1-21 Commands	supported by	Proxy Cluster	DCS Redis 4.0	instances	(1)
---------------------	--------------	---------------	---------------	-----------	-----

Keys	String	Hash	List	Set	Sorted Set	Server
DEL	APPEND	HDEL	BLPOP	SADD	ZADD	FLUSHAL L

Keys	String	Hash	List	Set	Sorted Set	Server
DUMP	BITCOUN T	HEXISTS	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOPLR USH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGETALL	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINCRBY	LINSERT	SINTER	ZRANGE	INFO
PERSIST	DECRBY	HINCRBY FLOAT	LLEN	SINTERS TORE	ZRANGE BYSCORE	ROLE
PTTL	GET	HKEYS	LPOP	SISMEMB ER	ZRANK	MEMORY
RENAME	GETRAN GE	HMGET	LPUSHX	SMEMBE RS	ZREMRA NGEBYR ANK	COMMA ND
RENAME NX	GETSET	HMSET	LRANGE	SMOVE	ZREMRA NGEBYC ORE	COMMA ND COUNT
RESTORE	INCR	HSET	LREM	SPOP	ZREVRA NGE	COMMA ND GETKEYS
SORT	INCRBY	HSETNX	LSET	SRANDM EMBER	ZREVRA NGEBYSC ORE	Comma ND INFO
TTL	INCRBYF LOAT	HVALS	LTRIM	SREM	ZREVRA NK	CONFIG GET
ТҮРЕ	MGET	HSCAN	RPOP	SUNION	ZSCORE	CONFIG RESETST AT
SCAN	MSET	HSTRLEN	RPOPLPU SH	SUNION STORE	ZUNION STORE	CONFIG REWRITE
OBJECT	MSETNX	HLEN	RPUSH	SSCAN	ZINTERS TORE	CONFIG SET
PEXPIRE	PSETEX	HKEYS	RPUSHX	-	ZSCAN	-
PEXPIREA T	SET	-	LPUSH	-	ZRANGE BYLEX	-
EXPIREAT	SETBIT	-	-	-	ZLEXCOU NT	-

Keys	String	Hash	List	Set	Sorted Set	Server
KEYS	SETEX	-	-	-	ZREMRA NGEBYSC ORE	-
тоисн	SETNX	-	-	-	ZREM	-
UNLINK	SETRAN GE	-	-	-	ZREMRA NGEBYLE X	-
-	STRLEN	-	-	-	ZREVRA NGEBYLE X	-
-	BITFIELD	-	-	-	-	-
-	GETBIT	-	-	-	-	-

 Table 1-22
 Commands supported by Proxy Cluster DCS Redis 4.0 instances (2)

HyperLog log	Pub/Sub	Transact ions	Connect ion	Scripting	Geo	Cluster
PFADD	PSUBSCR IBE	DISCARD	AUTH	EVAL	GEOADD	CLUSTE R INFO
PFCOUNT	PUBLISH	EXEC	ECHO	EVALSHA	GEOHASH	CLUSTE R NODES
PFMERGE	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS	CLUSTE R SLOTS
-	PUNSUB SCRIBE	UNWAT CH	QUIT	SCRIPT FLUSH	GEODIST	CLUSTE R ADDSL OTS
-	SUBSCRI BE	WATCH	CLIENT KILL	SCRIPT KILL	GEORADI US	ASKING
-	UNSUBS CRIBE	-	CLIENT LIST	SCRIPT LOAD	GEORADI USBYME MBER	READO NLY
-	-	-	CLIENT GETNA ME	SCRIPT DEBUG YES SYNC NO	GEOSEAR CH	READW RITE

HyperLog log	Pub/Sub	Transact ions	Connect ion	Scripting	Geo	Cluster
-	-	-	CLIENT SETNAM E	-	GEOSEAR CHSTORE	-

NOTE

Cluster commands in the preceding table are supported only by Proxy Cluster instances created after January, 2023.

Commands Disabled by DCS for Redis 4.0

The following lists commands disabled by DCS for Redis 4.0.

Table 1-23 Redis commands disabled in single-node and master/standby Redis 4.0 instances

Keys	Server
MIGRATE	SLAVEOF
-	SHUTDOWN
-	LASTSAVE
-	DEBUG commands
-	COMMAND
-	SAVE
-	BGSAVE
-	BGREWRITEAOF
-	SYNC
-	PSYNC

Table 1-24 Redis commands disabled in Proxy Cluster DCS Redis 4.0 instances

Keys	Server	Sorted Set	Cluster
MIGRATE	BGREWRITEAOF	BZPOPMAX	READONLY
MOVE	BGSAVE	BZPOPMIN	READWRIT E
RANDOMKEY	CLIENT commands	ZPOPMAX	-
WAIT	DEBUG OBJECT	ZPOPMIN	-

Keys	Server	Sorted Set	Cluster
-	DEBUG SEGFAULT	-	-
-	LASTSAVE	-	-
-	PSYNC	-	-
-	SAVE	-	-
-	SHUTDOWN	-	-
-	SLAVEOF	-	-
-	LATENCY commands	-	-
-	MODULE commands	-	-
-	LOLWUT	-	-
-	SWAPDB	-	-
-	REPLICAOF	-	-
-	SYNC	-	-

Table 1-25 Redis commands disabled in Redis Cluster Redis 4.0 instances

Keys	Server	Cluster
MIGRATE	SLAVEOF	CLUSTER MEET
-	SHUTDOWN	CLUSTER FLUSHSLOTS
-	LASTSAVE	CLUSTER ADDSLOTS
-	DEBUG commands	CLUSTER DELSLOTS
-	COMMAND	CLUSTER SETSLOT
-	SAVE	CLUSTER BUMPEPOCH
-	BGSAVE	CLUSTER SAVECONFIG
-	BGREWRITEAOF	CLUSTER FORGET
-	SYNC	CLUSTER REPLICATE
-	PSYNC	CLUSTER COUNT-FAILURE- REPORTS
-	-	CLUSTER FAILOVER
-	-	CLUSTER SET-CONFIG-EPOCH
-	-	CLUSTER RESET

1.5.3 Redis 5.0 Commands

DCS for Redis 5.0 is developed based on Redis 5.0.14 and is compatible with opensource protocols and commands.

This section describes DCS for Redis 5.0's compatibility with Redis commands, including supported and disabled commands. For more information about the command syntax, visit the **Redis official website**.

DCS for Redis instances support most Redis commands. Any client compatible with the Redis protocol can access DCS.

- For security purposes, some Redis commands are disabled in DCS, as listed in Commands Disabled by DCS for Redis 5.0.
- Some Redis commands are supported by cluster DCS instances for multi-key operations in the same slot. For details, see **Command Restrictions**.
- Some Redis commands have usage restrictions, which are described in **Other Command Usage Restrictions**.

Commands Supported by DCS for Redis 5.0

- **Table 1-26** and **Table 1-27** list commands supported by single-node, master/ standby, and Redis Cluster DCS for Redis 5.0.
- **Table 1-28** and **Table 1-29** list commands supported by Proxy Cluster DCS for Redis 5.0 instances.

NOTE

- Commands available since later Redis versions are not supported by earlier-version instances. Run a command on redis-cli to check whether it is supported by DCS for Redis. If the message "(error) ERR unknown command" is returned, the command is not supported.
- For DCS Redis 5.0 instances in the Redis Cluster mode, ensure that all commands in a pipeline are executed on the same shard.

Table 1-26 Commands supported by single-node, master/standby, and Redis Cluster DCS Redis 5.0 instances (1)

Keys	String	Hash	List	Set	Sorted Set	Server
DEL	APPEN D	HDEL	BLPOP	SADD	ZADD	FLUSHALL
DUMP	BITCOU NT	HEXIST S	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOP LRUSH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGETAL L	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINCRB Y	LINSER T	SINTER	ZRANGE	INFO

Keys	String	Hash	List	Set	Sorted Set	Server
PERSIST	DECRBY	HINCRB YFLOAT	LLEN	SINTERS TORE	ZRANGEBYS CORE	KEYS
PTTL	GET	HKEYS	LPOP	SISMEM BER	ZRANK	CLIENT KILL
RANDO MKEY	GETRA NGE	HMGET	LPUSH X	SMEMBE RS	ZREMRANGE BYRANK	CLIENT LIST
RENAME	GETSET	HMSET	LRANG E	SMOVE	ZREMRANGE BYCORE	CLIENT GETNAME
RENAME NX	INCR	HSET	LREM	SPOP	ZREVRANGE	CLIENT SETNAME
RESTOR E	INCRBY	HSETN X	LSET	SRAND MEMBE R	ZREVRANGE BYSCORE	CONFIG GET
SORT	INCRBY FLOAT	HVALS	LTRIM	SREM	ZREVRANK	MONITOR
TTL	MGET	HSCAN	RPOP	SUNION	ZSCORE	SLOWLOG
ТҮРЕ	MSET	HSTRLE N	RPOPL PU	SUNION STORE	ZUNIONSTO RE	ROLE
SCAN	MSETN X	HLEN	RPOPL PUSH	SSCAN	ZINTERSTOR E	SWAPDB
OBJECT	PSETEX	-	RPUSH	-	ZSCAN	MEMORY
PEXPIRE AT	SET	-	RPUSH X	-	ZRANGEBYL EX	CONFIG
PEXPIRE	SETBIT	-	LPUSH	-	ZLEXCOUNT	-
-	SETEX	-	-	-	ZPOPMIN	-
-	SETNX	-	-	-	ZPOPMAX	-
-	SETRAN GE	-	-	-	ZREMRANGE BYSCORE	-
-	STRLEN	-	-	-	ZREM	-
-	BITFIEL D	-	-	-	-	-

Table 1-27 Commands supported by single-node, master/standby, and Redis Cluster DCS Redis 5.0 instances (2)

HyperLo glog	Pub/Su b	Transac tions	Connec tion	Scriptin g	Geo	Stream
PFADD	PSUBSC RIBE	DISCAR D	AUTH	EVAL	GEOADD	ХАСК
PFCOUN T	PUBLIS H	EXEC	ECHO	EVALSH A	GEOHASH	XADD
PFMERG E	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS	XCLAIM
-	PUNSU BSCRIBE	UNWAT CH	QUIT	SCRIPT FLUSH	GEODIST	XDEL
_	SUBSCR IBE	WATCH	SELECT (not support ed by Redis Cluster instanc es)	SCRIPT KILL	GEORADIUS	XGROUP
-	UNSUB SCRIBE	-	-	SCRIPT LOAD	GEORADIUS BYMEMBER	XINFO
-	-	-	-	-	-	XLEN
-	-	-	-	-	-	XPENDING
-	-	-	-	-	-	XRANGE
-	-	-	-	-	-	XREAD
-	-	-	-	-	-	XREADGR OUP
-	-	-	-	-	-	XREVRANG E
-	-	-	-	-	-	XTRIM

Table 1-28 Commands supported by	Proxy Cluster DC	S Redis 5.0 instances ((1)
----------------------------------	------------------	-------------------------	-----

Keys	String	Hash	List	Set	Sorted Set	Server
DEL	APPEND	HDEL	BLPOP	SADD	ZADD	FLUSHAL L

Keys	String	Hash	List	Set	Sorted Set	Server
DUMP	BITCOUN T	HEXISTS	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOPLR USH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGETALL	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINCRBY	LINSERT	SINTER	ZRANGE	INFO
PERSIST	DECRBY	HINCRBY FLOAT	LLEN	SINTERS TORE	ZRANGE BYSCORE	ROLE
PTTL	GET	HKEYS	LPOP	SISMEMB ER	ZRANK	MEMORY
RENAME	GETRAN GE	HMGET	LPUSHX	SMEMBE RS	ZREMRA NGEBYR ANK	COMMA ND
RENAME NX	GETSET	HMSET	LRANGE	SMOVE	ZREMRA NGEBYC ORE	COMMA ND COUNT
RESTORE	INCR	HSET	LREM	SPOP	ZREVRA NGE	COMMA ND GETKEYS
SORT	INCRBY	HSETNX	LSET	SRANDM EMBER	ZREVRA NGEBYSC ORE	Comma ND INFO
TTL	INCRBYF LOAT	HVALS	LTRIM	SREM	ZREVRA NK	CONFIG GET
ТҮРЕ	MGET	HSCAN	RPOP	SUNION	ZSCORE	CONFIG RESETST AT
SCAN	MSET	HSTRLEN	RPOPLPU SH	SUNION STORE	ZUNION STORE	CONFIG REWRITE
OBJECT	MSETNX	HLEN	RPUSH	SSCAN	ZINTERS TORE	CONFIG SET
PEXPIRE	PSETEX	HKEYS	RPUSHX	-	ZSCAN	-
PEXPIREA T	SET	-	LPUSH	-	ZRANGE BYLEX	-
EXPIREAT	SETBIT	-	-	-	ZLEXCOU NT	-

Keys	String	Hash	List	Set	Sorted Set	Server
KEYS	SETEX	-	-	-	ZREMRA NGEBYSC ORE	-
MIGRATE	SETNX	-	-	-	ZREM	-
UNLINK	SETRAN GE	-	-	-	ZREMRA NGEBYLE X	-
тоисн	STRLEN	-	-	-	ZPOPMA X	-
-	BITFIELD	-	-	-	ZPOPMI N	-
-	GETBIT	-	-	-	BZPOPM AX	-
-	-	-	-	-	BZPOPMI N	-
-	-	-	-	-	ZREVRA NGEBYLE X	-

Table 1-29 Commands supported by Proxy Cluster DCS Redis 5.0 instances (2)

HyperLogl og	Pub/Sub	Transacti ons	Connecti on	Scripting	Geo
PFADD	PSUBSCRI BE	DISCARD	AUTH	EVAL	GEOADD
PFCOUNT	PUBLISH	EXEC	ECHO	EVALSHA	GEOHASH
PFMERGE	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS
-	PUNSUBS CRIBE	UNWATC H	QUIT	SCRIPT FLUSH	GEODIST
-	SUBSCRIB E	WATCH	CLIENT KILL	SCRIPT KILL	GEORADIUS
-	UNSUBSC RIBE	-	CLIENT LIST	SCRIPT LOAD	GEORADIUSBY MEMBER
-	-	-	CLIENT GETNAM E	SCRIPT DEBUG YES SYNC NO	GEOSEARCH

HyperLogl og	Pub/Sub	Transacti ons	Connecti on	Scripting	Geo
-	-	-	CLIENT SETNAM E	-	GEOSEARCHST ORE

Commands Disabled by DCS for Redis 5.0

The following lists commands disabled by DCS for Redis 5.0.

Table 1-30 Redis commands disabled in single-node and master/standby Redis 5.0 instances

Keys	Server
MIGRATE	SLAVEOF
-	SHUTDOWN
-	LASTSAVE
-	DEBUG commands
-	COMMAND
-	SAVE
-	BGSAVE
-	BGREWRITEAOF
-	SYNC
-	PSYNC

Table 1-31 Redis commands disabled in Pro	oxy Cluster DCS Redis 5.0 instances
---	-------------------------------------

Keys	Server	Sorted Set	Cluster
MIGRATE	BGREWRITEAOF	-	READONLY
MOVE	BGSAVE	-	READWRITE
RANDOMKEY	CLIENT commands	-	-
WAIT	DEBUG OBJECT	-	-
-	DEBUG SEGFAULT	-	-
-	LASTSAVE	-	-
-	PSYNC	-	-

Keys	Server	Sorted Set	Cluster
-	SAVE	-	-
-	SHUTDOWN	-	-
-	SLAVEOF	-	-
-	LATENCY commands	-	-
-	MODULE commands	-	-
-	LOLWUT	-	-
-	SWAPDB	-	-
-	REPLICAOF	-	-
-	SYNC	-	-

Table 1-32 Redis commands disabled in Redis Cluster Redis 5.0 instances

Keys	Server	Cluster
MIGRATE	SLAVEOF	CLUSTER MEET
-	SHUTDOWN	CLUSTER FLUSHSLOTS
-	LASTSAVE	CLUSTER ADDSLOTS
-	DEBUG commands	CLUSTER DELSLOTS
-	COMMAND	CLUSTER SETSLOT
-	SAVE	CLUSTER BUMPEPOCH
-	BGSAVE	CLUSTER SAVECONFIG
-	BGREWRITEAOF	CLUSTER FORGET
-	SYNC	CLUSTER REPLICATE
-	PSYNC	CLUSTER COUNT-FAILURE- REPORTS
-	-	CLUSTER FAILOVER
-	-	CLUSTER SET-CONFIG-EPOCH
-	-	CLUSTER RESET

1.5.4 Redis 6.0 Commands

DCS for Redis 6.0 is compatible with Redis 6.2.7 and with open-source protocols and commands.

This section describes DCS for Redis 6.0's command compatibility, including supported and disabled commands.

For more information about the command syntax, visit the **Redis official website**.

DCS Redis instances support most Redis commands. Any client compatible with the Redis protocol can access DCS.

- For security purposes, some Redis commands are disabled in DCS, as listed in Commands Disabled by DCS for Redis 6.0.
- Some Redis commands (such as **KEYS**, **FLUSHDB**, and **FLUSHALL**) have usage restrictions, which are described in **Other Command Usage Restrictions**.

Commands Supported by DCS for Redis 6.0

	Table 1-33 Commands supported by DCS for Redis 6	.0 (1)	
--	--	--------	--

Generic (Key)	String	Hash	List	Set	Sorted Set	Server
DEL	APPEN D	HDEL	BLPOP	SADD	ZADD	FLUSHALL
DUMP	BITCOU NT	HEXIST S	BRPOP	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	HGET	BRPOP LRUSH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	HGETAL L	LINDEX	SDIFFST ORE	ZINCRBY	TIME
MOVE	DECR	HINCRB Y	LINSER T	SINTER	ZRANGE	INFO
PERSIST	DECRBY	HINCRB YFLOAT	LLEN	SINTERS TORE	ZRANGEBYS CORE	CLIENT KILL
PTTL	GET	HKEYS	LPOP	SISMEM BER	ZRANK	CLIENT LIST
RANDO MKEY	GETRA NGE	HMGET	LPUSH X	SMEMBE RS	ZREMRANGE BYRANK	CLIENT GETNAME
RENAME	GETSET	HMSET	LRANG E	SMOVE	ZREMRANGE BYCORE	CLIENT SETNAME
RENAME NX	INCR	HSET	LREM	SPOP	ZREVRANGE	CONFIG GET

Generic (Key)	String	Hash	List	Set	Sorted Set	Server
RESTOR E	INCRBY	HSETN X	LSET	SRAND MEMBE R	ZREVRANGE BYSCORE	MONITOR
SORT	INCRBY FLOAT	HVALS	LTRIM	SREM	ZREVRANK	SLOWLOG
TTL	MGET	HSCAN	RPOP	SUNION	ZSCORE	ROLE
TYPE	MSET	HSTRLE N	RPOPL PU	SUNION STORE	ZUNIONSTO RE	SWAPDB
SCAN	MSETN X	HLEN	RPOPL PUSH	SSCAN	ZINTERSTOR E	MEMORY
OBJECT	PSETEX	-	RPUSH	-	ZSCAN	CONFIG
PEXPIRE AT	SET	-	RPUSH X	-	ZRANGEBYL EX	-
PEXPIRE	SETBIT	-	LPUSH	-	ZLEXCOUNT	-
KEYS	SETEX	-	-	-	ZPOPMIN	-
-	SETNX	-	-	-	ZPOPMAX	-
-	SETRAN GE	-	-	-	ZREMRANGE BYSCORE	-
-	STRLEN	-	-	-	ZREM	-
-	BITFIEL D	-	-	-	-	-

 Table 1-34 Commands supported by DCS for Redis 6.0 (2)

HyperLo glog	Pub/Su b	Transac tions	Connec tion	Scriptin g	Geo	Stream
PFADD	PSUBSC RIBE	DISCAR D	AUTH	EVAL	GEOADD	XACK
PFCOUN T	PUBLIS H	EXEC	ECHO	EVALSH A	GEOHASH	XADD
PFMERG E	PUBSUB	MULTI	PING	SCRIPT EXISTS	GEOPOS	XCLAIM
-	PUNSU BSCRIBE	UNWAT CH	QUIT	SCRIPT FLUSH	GEODIST	XDEL
-	SUBSCR IBE	WATCH	SELECT	SCRIPT KILL	GEORADIUS	XGROUP

HyperLo glog	Pub/Su b	Transac tions	Connec tion	Scriptin g	Geo	Stream
-	UNSUB SCRIBE	-	-	SCRIPT LOAD	GEORADIUS BYMEMBER	XINFO
-	-	-	-	-	-	XLEN
-	-	-	-	-	-	XPENDING
-	-	-	-	-	-	XRANGE
-	-	-	-	-	-	XREAD
-	-	-	-	-	-	XREADGR OUP
-	-	-	-	-	-	XREVRANG E
-	-	-	-	-	-	XTRIM

Commands Disabled by DCS for Redis 6.0

Table 1-35 Redis commands disabled in DCS Redis 6.0 instances

Generic (Key)	Server
MIGRATE	SLAVEOF
-	SHUTDOWN
-	LASTSAVE
-	DEBUG commands
-	COMMAND
-	SAVE
-	BGSAVE
-	BGREWRITEAOF
-	SYNC
-	PSYNC

1.5.5 Web CLI Commands

Web CLI is a command line tool provided on the DCS console. This section describes Web CLI's compatibility with Redis commands, including supported and disabled commands. For details about the command syntax, visit the **Redis official website**.

Currently, only DCS for Redis 4.0/5.0/6.0 support Web CLI.

NOTE

- Keys and values cannot contain spaces.
- If the value is empty, **nil** is returned after the **GET** command is executed.

Commands Supported by Web CLI

The following lists the commands supported when you use Web CLI.

Keys	String	List	Set	Sorted Set	Server
DEL	APPEND	RPUSH	SADD	ZADD	FLUSHALL
OBJECT	BITCOUN T	RPUSHX	SCARD	ZCARD	FLUSHDB
EXISTS	BITOP	BRPOPLR USH	SDIFF	ZCOUNT	DBSIZE
EXPIRE	BITPOS	LINDEX	SDIFFSTO RE	ZINCRBY	TIME
MOVE	DECR	LINSERT	SINTER	ZRANGE	INFO
PERSIST	DECRBY	LLEN	SINTERST ORE	ZRANGEBYSCO RE	CLIENT KILL
PTTL	GET	LPOP	SISMEMB ER	ZRANK	CLIENT LIST
RANDOM KEY	GETRAN GE	LPUSHX	SMEMBER S	ZREMRANGEB YRANK	CLIENT GETNAME
RENAME	GETSET	LRANGE	SMOVE	ZREMRANGEB YCORE	CLIENT SETNAME
RENAMEN X	INCR	LREM	SPOP	ZREVRANGE	CONFIG GET
SCAN	INCRBY	LSET	SRANDME MBER	ZREVRANGEBY SCORE	MONITOR
SORT	INCRBYFL OAT	LTRIM	SREM	ZREVRANK	SLOWLOG
TTL	MGET	RPOP	SUNION	ZSCORE	ROLE
ТҮРЕ	MSET	RPOPLP U	SUNIONS TORE	ZUNIONSTORE	SWAPDB
-	MSETNX	RPOPLP USH	SSCAN	ZINTERSTORE	MEMORY
-	PSETEX	-	-	ZSCAN	-

 Table 1-36 Commands supported by Web CLI (1)

Keys	String	List	Set	Sorted Set	Server
-	SET	-	-	ZRANGEBYLEX	-
-	SETBIT	-	-	ZLEXCOUNT	-
-	SETEX	-	-	-	-
-	SETNX	-	-	-	-
-	SETRANG E	-	-	-	-
-	STRLEN	-	-	-	-
-	BITFIELD	-	-	-	-

 Table 1-37 Commands supported by Web CLI (2)

Hash	HyperLoglo g	Connectio n	Scripting	Geo
HDEL	PFADD	AUTH	EVAL	GEOADD
HEXISTS	PFCOUNT	ECHO	EVALSHA	GEOHASH
HGET	PFMERGE	PING	SCRIPT EXISTS	GEOPOS
HGETALL	-	QUIT	SCRIPT FLUSH	GEODIST
HINCRBY	-	-	SCRIPT KILL	GEORADIUS
HINCRBYFL OAT	-	-	SCRIPT LOAD	GEORADIUSBYME MBER
HKEYS	-	-	-	-
HMGET	-	-	-	-
HMSET	-	-	-	-
HSET	-	-	-	-
HSETNX	-	-	-	-
HVALS	-	-	-	-
HSCAN	-	-	-	-
HSTRLEN	-	-	-	-

Commands Disabled in Web CLI

The following lists the commands disabled when you use Web CLI.

Table 1-38 Redis commands disabled in Web CLI for single-node and master	er/
standby instances (1)	

Keys	Server	Transactions	Pub/Sub
MIGRATE	SLAVEOF	UNWATCH	PSUBSCRIBE
WAIT	SHUTDOWN	REPLICAOF	PUBLISH
DUMP	DEBUG commands	DISCARD	PUBSUB
RESTORE	CONFIG SET	EXEC	PUNSUBSCRIB E
-	CONFIG REWRITE	MULTI	SUBSCRIBE
-	CONFIG RESETSTAT	WATCH	UNSUBSCRIBE
-	SAVE	-	-
-	BGSAVE	-	-
-	BGREWRITEAOF	-	-
-	COMMAND	-	-
-	KEYS	-	-
-	MONITOR	-	-
-	SYNC	-	-
-	PSYNC	-	-
-	ACL	-	-

Table 1-39 Redis commands disabled in Web CLI for single-node and master/ standby instances (2)

List	Connection	Sorted Set
BLPOP	SELECT	BZPOPMAX
BRPOP	-	BZPOPMIN
BLMOVE	-	BZMPOP
BRPOPLPUSH	-	-
BLMPOP	-	-

Keys	Server	Transactions	Cluster
MIGRATE	SLAVEOF	UNWATCH	CLUSTER MEET
WAIT	SHUTDOWN	REPLICAOF	CLUSTER FLUSHSLOTS
DUMP	DEBUG commands	DISCARD	CLUSTER ADDSLOTS
RESTORE	CONFIG SET	EXEC	CLUSTER DELSLOTS
-	CONFIG REWRITE	MULTI	CLUSTER SETSLOT
-	CONFIG RESETSTAT	WATCH	CLUSTER BUMPEPOCH
-	SAVE	-	CLUSTER SAVECONFIG
-	BGSAVE	-	CLUSTER FORGET
-	BGREWRITEAOF	-	CLUSTER REPLICATE
-	COMMAND	-	CLUSTER COUNT- FAILURE-REPORTS
-	KEYS	-	CLUSTER FAILOVER
-	MONITOR	-	CLUSTER SET-CONFIG- EPOCH
-	SYNC	-	CLUSTER RESET
-	PSYNC	-	-
-	ACL	-	-

Table 1-40 Redis commands disabled in Web CLI for Redis Cluster instances (1)

Table 1-41 Redis commands disabled in Web CLI for Redis Cluster instances (2)

Pub/Sub	List	Connection	Sorted Set
PSUBSCRIBE	BLPOP	SELECT	BZPOPMAX
PUBLISH	BRPOP	-	BZPOPMIN
PUBSUB	BLMOVE	-	BZMPOP
PUNSUBSCRIBE	BRPOPLPUSH	-	-
SUBSCRIBE	BLMPOP	-	-
UNSUBSCRIBE	-	-	-

1.5.6 Command Restrictions

Some Redis commands are supported by Redis Cluster DCS instances for multi-key operations in the same slot. For details, see **Table 1-42**.

Table 1-43 lists commands restricted for Proxy Cluster DCS Redis 4.0 instances.

 Table 1-44 lists commands restricted for Proxy Cluster DCS Redis 5.0 instances.

Category	Description
Set	
SINTER	Returns the members of the set resulting from the intersection of all the given sets.
SINTERSTORE	Equal to SINTER , but instead of returning the result set, it is stored in <i>destination</i> .
SUNION	Returns the members of the set resulting from the union of all the given sets.
SUNIONSTORE	Equal to SUNION , but instead of returning the result set, it is stored in <i>destination</i> .
SDIFF	Returns the members of the set resulting from the difference between the first set and all the successive sets.
SDIFFSTORE	Equal to SDIFF , but instead of returning the result set, it is stored in <i>destination</i> .
SMOVE	Moves member from the set at source to the set at <i>destination</i> .
Sorted Set	
ZUNIONSTORE	Computes the union of <i>numkeys</i> sorted sets given by the specified keys.
ZINTERSTORE	Computes the intersection of <i>numkeys</i> sorted sets given by the specified keys.
HyperLogLog	
PFCOUNT	Returns the approximated cardinality computed by the HyperLogLog data structure stored at the specified variable.
PFMERGE	Merges multiple HyperLogLog values into a unique value.
Keys	
RENAME	Renames <i>key</i> to <i>newkey</i> .
RENAMENX	Renames key to newkey if newkey does not yet exist.
BITOP	Performs a bitwise operation between multiple keys (containing string values) and stores the result in the destination key.

 Table 1-42 Redis commands restricted in Redis Cluster DCS instances.

Category	Description	
RPOPLPUSH	Returns and removes the last element (tail) of the list stored at source, and pushes the element at the first element (head) of the list stored at <i>destination</i> .	
String		
MSETNX	Merges multiple HyperLogLog values into a unique value.	

While running commands that take a long time to run, such as **FLUSHALL**, DCS instances may not respond to other commands and may change to the faulty state. After the command finishes executing, the instance will return to normal.

Table 1-43 Redis commands restricted for Proxy Cluster DCS Redis 4.0 instances

Category	Command	Restriction
Set	SMOVE	For a Proxy Cluster instance, the source and destination keys must be in the same slot.
Geo	GEORADIUS	• For a Proxy Cluster instance, all
	GEORADIUSBYMEMBER	keys transferred must be in the same slot.
	GEOSEARCHSTORE	• For a Proxy Cluster instance with multiple databases, the STORE option is not supported.
Connectio n	CLIENT KILL	 Only the following two formats are supported: CLIENT KILL ip:port CLIENT KILL ADDR ip:port The id field has a random value, and it does not meet the idc1<idc2 li="" requirement.<="" tc1<tc2="" →=""> </idc2>
	CLIENT LIST	 Only the following two formats are supported: CLIENT LIST CLIENT LIST [TYPE normal master replica pubsub] The id field has a random value, and it does not meet the idc1<idc2 li="" requirement.<="" tc1<tc2="" →=""> </idc2>

Category	Command	Restriction
	SELECT index	Multi-DB of Proxy Cluster instances can be implemented by changing the keys. This solution is not recommended.
		Constraints on supporting multi-DB for a Proxy Cluster instance:
		1. The backend storage rewrites keys based on certain rules. Keys in the exported RDB file are not the original keys but can still be accessed through the Redis protocol.
		2. The FLUSHDB command deletes keys one by one, which takes a long time.
		3. SWAPDB is not supported.
		 The INFO KEYSPACE command does not return data of multi- DB.
		5. The DBSIZE command is time- consuming. Do not use it in the code.
		 If multi-DB is used, the performance of the KEYS and SCAN commands deteriorates by up to 50%.
		 LUA scripts do not support multi-DB.
		 The RANDOMKEY command does not support multi-DB.
		9. By default, multi-DB is disabled. Before enabling or disabling this option for an instance, clear the instance data.
HyperLogL	PFCOUNT	For a Proxy Cluster instance, all
og	PFMERGE	keys transferred must be in the same slot.
Keys	RENAME	For a Proxy Cluster instance, all
	RENAMENX	keys transferred must be in the same slot.
	SCAN	Proxy Cluster instances do not support the SCAN command in pipelines.

Category	Command	Restriction
Lists	BLPOP	For a Proxy Cluster instance, all
	BRPOP	same slot.
	BRPOPLPUSH	
Pub/Sub	PSUBSCRIBE	Proxy Cluster instances do not support keyspace event subscription, so there would be no keyspace event subscription failure.
Scripting	EVAL	• For a Proxy Cluster instance, all
	EVALSHA	same slot.
		• When the multi-DB function is enabled for a Proxy Cluster instance, the KEYS parameter is modified. Pay attention to the KEYS parameter used in the Lua script.
Server	MEMORY DOCTOR	For a Proxy Cluster instance, add
	MEMORY HELP	of the command.
	MEMORY MALLOC-STATS	Do as follows to obtain the IP
	MEMORY PURGE	(MEMORY USAGE is used as an
	MEMORY STATS	example): 1 Run the cluster keyslot <i>key</i>
	MEMORY USAGE	command to query the slot number of a key.
		 2. Run the icluster nodes command to query the IP address and port number corresponding to the slot where the key is. If the required information is not returned after you run the icluster nodes command, your Proxy Cluster instance may be of an earlier version. In this case, run the cluster nodes command.
		3. Run the MEMORY USAGE <i>key</i> <i>ip:port</i> command. If multi-DB is enabled for the Proxy Cluster instance, run the MEMORY USAGE <i>xxx</i> : As <i>{key}</i> <i>ip:port</i> command, where <i>xxx</i> indicates the DB where the key

Category	Command	Restriction
	MONITOR	value is. For example, DB0, DB1, and DB255 correspond to 000, 001, and 255, respectively. The following is an example for a single-DB Proxy Cluster instance: set key1 value1 OK get key1 value1 cluster keyslot key1 9189 icluster nodes xxx 192.168.00.00:1111@xxx xxx connected 10923-16383 xxx 192.168.00.01:222@xxx xxx connected 0-5460 xxx 192.168.00.02:3333@xxx xxx connected 5461-10922 MEMORY USAGE key1 192.168.00.02:3333 54
Strings	BITOP	For a Proxy Cluster instance, all
	MSETNX	same slot.
Transactio ns	WATCH	For a Proxy Cluster instance, all keys transferred must be in the same slot.
Streams	ХАСК	Currently, Proxy Cluster instances
	XADD	do not support Streams.
	XCLAIM	
	XDEL	
	XGROUP	
	XINFO	
	XLEN	
	XPENDING	
	XRANGE	
	XTRIM	
	XREVRANGE	
	XREAD	
	XREADGROUP GROUP	

Category	Command	Restriction
Set	SMOVE	For a Proxy Cluster instance, the source and destination keys must be in the same slot.
Sorted	BZPOPMAX	For a Proxy Cluster instance, all
sets	BZPOPMIN	same slot.
Geo	GEORADIUS	• For a Proxy Cluster instance, all
	GEORADIUSBYMEMBER	same slot.
	GEOSEARCHSTORE	 For a Proxy Cluster instance with multiple databases, the STORE option is not supported.
Connectio n	CLIENT KILL	 Only the following two formats are supported: CLIENT KILL ip:port CLIENT KILL ADDR ip:port The id field has a random value, and it does not meet the
		$idc1 < idc2 \rightarrow Tc1 < Tc2$ requirement.
	CLIENT LIST	 Only the following two formats are supported: CLIENT LIST
		 CLIENT LIST [TYPE normal] master replica pubsub]
		 The id field has a random value, and it does not meet the idc1<idc2 li="" requirement.<="" tc1<tc2="" →=""> </idc2>

Table 1-44 Redis commands restricted for Proxy Cluster DCS Redis 5.0 instances

Category	Command	Restriction
	SELECT index	Multi-DB of Proxy Cluster instances can be implemented by changing the keys. This solution is not recommended.
		Constraints on supporting multi-DB for a Proxy Cluster instance:
		1. The backend storage rewrites keys based on certain rules. Keys in the exported RDB file are not the original keys but can still be accessed through the Redis protocol.
		2. The FLUSHDB command deletes keys one by one, which takes a long time.
		3. SWAPDB is not supported.
		 The INFO KEYSPACE command does not return data of multi- DB.
		5. The DBSIZE command is time- consuming. Do not use it in the code.
		 If multi-DB is used, the performance of the KEYS and SCAN commands deteriorates by up to 50%.
		 LUA scripts do not support multi-DB.
		 The RANDOMKEY command does not support multi-DB.
		9. By default, multi-DB is disabled. Before enabling or disabling this option for an instance, clear the instance data.
HyperLogL	PFCOUNT	For a Proxy Cluster instance, all
og	PFMERGE	keys transferred must be in the same slot.
Keys	RENAME	For a Proxy Cluster instance, all
	RENAMENX	keys transferred must be in the same slot.
	SCAN	Proxy Cluster instances do not support the SCAN command in pipelines.

Category	Command	Restriction
Lists	BLPOP	For a Proxy Cluster instance, all keys transferred must be in the same slot.
	BRPOP	
	BRPOPLPUSH	
Pub/Sub	PSUBSCRIBE	Proxy Cluster instances do not support keyspace event subscription, so there would be no keyspace event subscription failure.
Scripting	EVAL	 For a Proxy Cluster instance, all keys transferred must be in the same slot. When the multi-DB function is enabled for a Proxy Cluster instance, the KEYS parameter is modified. Pay attention to the KEYS parameter used in the Lua script.
	EVALSHA	
Server	MEMORY DOCTOR	 For a Proxy Cluster instance, add the <i>ip.port</i> of the node at the end of the command. Do as follows to obtain the IP address and port number of a node (MEMORY USAGE is used as an example): 1. Run the cluster keyslot key command to query the slot number of a key.
	MEMORY HELP	
	MEMORY MALLOC-STATS	
	MEMORY PURGE	
	MEMORY STATS	
	MEMORY USAGE	
		 2. Run the icluster nodes command to query the IP address and port number corresponding to the slot where the key is. If the required information is not returned after you run the icluster nodes command, your Proxy Cluster instance may be of an earlier version. In this case, run the cluster nodes command.
		3. Run the MEMORY USAGE <i>key</i> <i>ip:port</i> command. If multi-DB is enabled for the Proxy Cluster instance, run the MEMORY USAGE <i>xxx</i> : As <i>{key}</i> <i>ip:port</i> command, where <i>xxx</i> indicates the DB where the key

Category	Command	Restriction
	MONITOR	value is. For example, DB0, DB1, and DB255 correspond to 000, 001, and 255, respectively. The following is an example for a single-DB Proxy Cluster instance: set key1 value1 OK get key1 value1 cluster keyslot key1 9189 icluster nodes xxx 192.168.00.00:1111@xxx xxx connected 10923-16383 xxx 192.168.00.01:2222@xxx xxx connected 0-5460 xxx 192.168.00.02:3333@xxx xxx connected 5461-10922 MEMORY USAGE key1 192.168.00.02:3333 54
Strings	BITOP	For a Proxy Cluster instance, all keys transferred must be in the same slot.
	MSETNX	
Transactio ns	WATCH	For a Proxy Cluster instance, all keys transferred must be in the same slot.
Streams	ХАСК	Currently, Proxy Cluster instances do not support Streams.
	XADD	
	XCLAIM	
	XDEL	
	XGROUP	
	XINFO	
	XLEN	
	XPENDING	
	XRANGE	
	XTRIM	
	XREVRANGE	
	XREAD	
	XREADGROUP GROUP	

1.5.7 Other Command Usage Restrictions

This section describes restrictions on some Redis commands.

KEYS Command

In case of a large amount of cached data, running the **KEYS** command may block the execution of other commands for a long time or occupy exceptionally large memory. Therefore, when running the **KEYS** command, describe the exact pattern and do not use fuzzy **keys** *. Do not use the **KEYS** command in the production environment. Otherwise, the service running will be affected.

Commands in the Server Group

- While running commands that take a long time to run, such as **FLUSHALL**, DCS instances may not respond to other commands and may change to the faulty state. After the command finishes executing, the instance will return to normal.
- When the **FLUSHDB** or **FLUSHALL** command is run, execution of other service commands may be blocked for a long time in case of a large amount of cached data.

EVAL and EVALSHA Commands

- When the **EVAL** or **EVALSHA** command is run, at least one key must be contained in the command parameter. Otherwise, the error message "ERR eval/evalsha numkeys must be bigger than zero in redis cluster mode" is displayed.
- When the **EVAL** or **EVALSHA** command is run, a cluster DCS Redis instance uses the first key to compute slots. Ensure that the keys to be operated in your code are in the same slot. For details, visit https://redis.io/commands.
- For the **EVAL** command:
 - You are advised to learn the Lua script features of Redis before running the **EVAL** command. For details, see https://redis.io/commands/eval.
 - The execution timeout time of a Lua script is 5 seconds. Time-consuming statements such as long-time sleep and large loop statements should be avoided.
 - When calling a Lua script, do not use random functions to specify keys. Otherwise, the execution results are inconsistent on the master and standby nodes.

Other Restrictions

• The time limit for executing a Redis command is 15 seconds. To prevent other services from failing, a master/replica switchover will be triggered after the command execution times out.

1.6 Disaster Recovery and Multi-Active Solution

Whether you use DCS as the frontend cache or backend data store, DCS is always ready to ensure data reliability and service availability. The following figure shows the evolution of DCS DR architectures.
Figure 1-8 DCS DR architecture evolution

To meet the reliability requirements of your data and services, you can choose to deploy your DCS instance within a single AZ or across AZs.

Single-AZ HA

Single-AZ deployment means to deploy an instance within a physical equipment room. DCS provides process/service HA, data persistence, and hot standby DR policies for different types of DCS instances.

Single-node DCS instance: When DCS detects a process fault, a new process is started to ensure service HA.

Figure 1-9 HA for a single-node DCS instance deployed within an AZ

Master/Standby DCS instance: Data is persisted to disk in the master node and incrementally synchronized and persisted to the standby node, achieving hot standby and data persistence.

Figure 1-10 HA for a master/standby DCS instance deployed within an AZ

Cluster DCS instance: Similar to a master/standby instance, data in each shard (instance process) of a cluster instance is synchronized between master and standby nodes and persisted on both nodes.

Figure 1-11 HA for a cluster DCS instance deployed within an AZ

Cross-AZ DR

The master and standby nodes of a master/standby DCS instance can be deployed across AZs (in different equipment rooms). Power supplies and networks of different AZs are physically isolated. When a fault occurs in the AZ where the master node is deployed, the standby node connects to the client and takes over data read and write operations.

Figure 1-12 Cross-AZ deployment of a master/standby DCS instance

D NOTE

Each shard (process) is deployed across AZs.

When creating a master/standby DCS instance, select a standby AZ that is different from the primary AZ. See the following figure.

Figure 1-13 Selecting different AZs

Instance Type	Master/Standby	Single-node	Proxy Cluster	Redis Cluster
	Backup Failover Persistence			
CPU Architecture	x86			
Replicas	- 2 + ?			
Primary AZ	AZ1	AZ2		
Standby AZ	AZ1	AZ2		

Backup, configuration modification, and password change functions cannot be used during the fault.

NOTE

You can deploy your application across AZs to ensure both data reliability and service availability in the event of power supply or network disruptions.

1.7 Comparing Redis Versions

When creating a DCS Redis instance, you can select the cache engine version and the instance type.

Version

DCS supports Redis 3.0/4.0/5.0/6.0. The following table describes the differences between these versions.

Feat ure	Redis 3.0	Redis 4.0 & Redis 5.0	Redis 6.0
Open - sourc e comp atibil ity	Redis 3.0.7	Redis 4.0.14 and 5.0.14, respectively	6.2.7
Insta nce depl oyme nt mod e	Based on VMs	Containerized based on physical servers	Containerized based on physical servers
Time requi for creati ng an insta nce	3–15 minutes, or 10–30 minutes for cluster instances.	8 seconds	8 seconds
QPS	100,000 QPS per node	100,000 QPS per node	100,000 QPS per node
Publi c netw ork acces s	Supported	Not supported	Not supported
Dom ain nam e acces s	Supported within a VPC	Supported within a VPC	Supported within a VPC
Visua lized data man age ment	Not supported	Web CLI for connecting to Redis and managing data	Web CLI for connecting to Redis and managing data

Table 1-45	Differences	hetween	Redis	versions
	Differences	Detween	Reals	10112

Feat ure	Redis 3.0	Redis 4.0 & Redis 5.0	Redis 6.0
lnsta nce type	Single-node, master/standby, and Proxy Cluster	Single-node, master/ standby, Proxy Cluster, and Redis Cluster	Single-node and master/standby
Insta nce total mem ory	Ranges from 2 GB, 4 GB, 8 GB, to 1024 GB.	Regular specifications range from 2 GB, 4 GB, 8 GB, to 1024 GB. Small specifications, such as 128 MB, 256 MB, 512 MB, and 1 GB, are also available for single-node and master/standby instances.	2 GB, 4 GB, 8 GB, 16 GB, 32 GB, and 64 GB. Small specifications (128 MB, 256 MB, 512 MB, and 1 GB) are also supported.
Scale -up or scale - down	Online scale-up and scale-down	Online scale-up and scale- down	Online scale-up and scale-down
Back up and resto ratio n	Supported for master/standby and cluster instances	Supported for master/ standby and cluster instances	Supported for master/standby instances

D NOTE

The underlying architectures vary by Redis version. Once a Redis version is chosen, it cannot be changed. For example, you cannot upgrade a DCS Redis 3.0 instance to Redis 4.0 or 5.0. If you require a higher Redis version, create a new instance that meets your requirements and then migrate data from the old instance to the new one.

Instance type

Select from single-node, master/standby, and cluster types. For details about their architectures and application scenarios, see **DCS Instance Types**.

1.8 Comparing DCS and Open-Source Cache Services

DCS supports single-node, master/standby, and cluster instances, ensuring high read/write performance and fast data access. It also supports various instance management operations to facilitate your O&M. With DCS, you only need to focus on the service logic, without concerning about the deployment, monitoring, scaling, security, and fault recovery issues.

DCS is compatible with open-source Redis, and can be customized based on your requirements. This renders DCS unique features in addition to the advantages of open-source cache databases.

DCS for Redis vs. Open-Source Redis

Table 1-46 Differences between DCS for Redis ar	d open-source Redis
---	---------------------

Feature	Open-Source Redis	DCS for Redis
Service deployme nt	Requires 0.5 to 2 days to prepare servers.	 Creates a Redis 3.0 instance in 5 to 15 minutes. Creates a containerized Redis 4.0 or later instance within 8 seconds.
Version	-	Deeply engaged in the open-source community and supports the latest Redis version. Redis 3.0/4.0/5.0/6.0 are supported.
Security	Network and server safety is the user's responsibility.	 Network security is ensured using VPCs and security groups. Data reliability is ensured by data replication and scheduled backup.
Performa nce	-	100,000 QPS per node
Monitorin g	Provides only basic statistics.	 Provides more than 30 monitoring metrics and customizable alarm threshold and policies. Various metrics External metrics include the number of commands, concurrent operations, connections, clients, and denied connections. Resource usage metrics include CPU usage, physical memory usage, network input throughput, and network output throughput. Internal metrics include instance capacity usage, as well as the number of keys, expired keys, PubSub channels, PubSub patterns, keyspace hits, and keyspace misses. Custom alarm thresholds and policies for different metrics to help identify service faults.
Backup and restoratio n	Supported	 Supports scheduled and manual backup. Backup files can be downloaded. Backup data can be restored on the console.

Feature	Open-Source Redis	DCS for Redis
Paramete r managem ent	No visualized parameter management	 Visualized parameter management is supported on the console. Configuration parameters can be modified online. Data can be accessed and modified on the console.
Scale-up	Interrupts services and involves a complex procedure from modifying the server RAM to modifying Redis memory and restarting the OS and services.	 Supports online scale-up and scale-down without interrupting services. Specifications can be scaled up or down within the available range based on service requirements.

1.9 Notes and Constraints

Network

VPCs are used to manage the network security of cloud services.

- The client must be deployed on an ECS that belongs to the same VPC as the DCS instance.
- For a DCS Redis 3.0 instance, select the same security group for the DCS instance and the ECS where your client is deployed. If the DCS instance and ECS belong to different security groups, add inbound and outbound rules for the security groups. For more information on how to add the rules, see Security Group Configurations.
- For a DCS Redis 4.0/5.0/6.0 instance, add the IP address of the ECS where your client is deployed to the whitelist of the instance. For details, see Managing IP Address Whitelist.

Remarks

• You can use RESTful APIs to access DCS. Before debugging the APIs, obtain region and endpoint information from **Regions and Endpoints**.

1.10 Basic Concepts

DCS Instance

An instance is the minimum resource unit provided by DCS.

DCS supports the Redis cache engine, and single-node, master/standby, and cluster instance types. For each instance type, multiple specifications are available.

For details, see DCS Instance Specifications and DCS Instance Types.

Project

Projects are used to group and isolate OpenStack resources (computing resources, storage resources, and network resources). A project can be a department or a project team. Multiple projects can be created for one account.

Public Network Access

An EIP can be bound to a DCS Redis 3.0 instance. You can access the instance through clients by using the EIP. This function is not available for other instance versions.

Stunnel is used to encrypt communication content in public network access. The network delay is slightly higher than that in the VPC, so public network access is suitable for local commissioning in the development phase.

For details, see the **public access instructions**.

Password-Free Access

DCS Redis instances can be accessed in the VPC without passwords. Latency is lower because no password authentication is involved.

You can enable password-free access for instances that do not have sensitive data. To ensure data security, you are not allowed to enable password-free access for instances enabled with public network access.

For details, see **Resetting Instance Passwords**.

Cross-AZ Deployment

Master/Standby instances are deployed across different AZs with physically isolated power supplies and networks. Applications can also be deployed across AZs to achieve HA for both data and applications.

When creating a master/standby or cluster DCS Redis instance, you can select a standby AZ for the standby node.

Shard

A shard is a management unit of a cluster DCS Redis instance. Each shard corresponds to a redis-server process. A cluster consists of multiple shards. Each shard has multiple slots. Data is distributedly stored in the slots. The use of shards increases cache capacity and concurrent connections.

Each cluster instance consists of multiple shards. By default, each shard is a master/standby instance with two replicas. The number of shards is equal to the number of master nodes in a cluster instance.

Replica

A replica is a node in a DCS instance. A single-replica instance has no standby node. A two-replica instance has one master node and one standby node. By default, each master/standby instance has two replicas. If the number of replicas is set to three for a master/standby instance, the instance has one master node and two standby nodes. A single-node instance has only one node.

1.11 Billing

Billing Items

DCS usage is billed by DCS instance specifications.

Item	Billing
DCS instance	Billing based on DCS instance specifications.

Note: You will be charged based on the selected DCS instance specifications instead of the actual cache capacity.

Billing Mode

Pay-per-use (hourly): You can start and stop DCS instances and will be billed based on the duration of your use of DCS instances. Billing starts when a DCS instance is created and ends when the instance is deleted. The minimum time unit is one second.

Configuration Changes

You can change the specifications of a DCS Redis or Memcached instance, that is, scale up or down an instance or change the instance type from single-node to master/standby. After you successfully change the specifications, the instance is billed based on new specifications.

1.12 Permissions

If you need to assign different permissions to employees in your enterprise to access your DCS resources, Identity and Access Management (IAM) is a good choice for fine-grained permissions management. IAM provides identity authentication, permissions management, and access control, helping you secure access to your resources.

With IAM, you can use your account to create IAM users, and assign permissions to the users to control their access to specific resources. For example, some software developers in your enterprise need to use DCS resources but should not be allowed to delete DCS instances or perform any other high-risk operations. In this scenario, you can create IAM users for the software developers and grant them only the permissions required for using DCS resources.

If your account does not require individual IAM users for permissions management, skip this section.

DCS Permissions

By default, new IAM users do not have permissions assigned. You need to add a user to one or more groups, and attach permissions policies or roles to these groups. Users inherit permissions from the groups to which they are added and can perform specified operations on cloud services based on the permissions.

DCS is a project-level service deployed and accessed in specific physical regions. To assign DCS permissions to a user group, specify the scope as region-specific projects and select regions for the permissions to take effect. If **All projects** is selected, the permissions will take effect for the user group in all region-specific projects. When accessing DCS, the users need to switch to a region where they have been authorized to use this service.

You can grant users permissions by using roles and policies.

- Roles: A type of coarse-grained authorization mechanism that defines permissions related to user responsibilities. This mechanism provides only a limited number of service-level roles for authorization. When using roles to grant permissions, you must also assign other roles on which the permissions depend to take effect. However, roles are not an ideal choice for fine-grained authorization and secure access control.
- Policies: A type of fine-grained authorization mechanism that defines
 permissions required to perform operations on specific cloud resources under
 certain conditions. This mechanism allows for more flexible policy-based
 authorization, meeting requirements for secure access control. For example,
 you can grant DCS users only the permissions for operating DCS instances.
 Fine-grained policies are based on APIs. The minimum granularity of a policy
 is API actions. For the API actions supported by DCS, see Permissions Policies
 and Supported Actions.

Table 1-47 lists all the system permissions supported by DCS.

Role/Policy Name	Description	Туре	Dependency
DCS FullAccess	All permissions for DCS. Users granted these permissions can operate and use all DCS instances.	System- defined policy	None
DCS UserAccess	Common user permissions for DCS, excluding permissions for creating, modifying, deleting DCS instances and modifying instance specifications.	System- defined policy	None

Table 1-47	7 System-defined	roles and	policies	supported	by	DCS
------------	------------------	-----------	----------	-----------	----	-----

Role/Policy Name	Description	Туре	Dependency
DCS ReadOnlyAcces s	Read-only permissions for DCS. Users granted these permissions can only view DCS instance data.	System- defined policy	None

NOTE

The **DCS UserAccess** policy is different from the **DCS FullAccess** policy. If you configure both of them, you cannot create, modify, delete, or scale DCS instances because deny statements will take precedence over allowed statements.

Table 1-48 lists the common operations supported by system-defined policies for DCS.

Table 1-48 Common o	perations supported	by each system policy
---------------------	---------------------	-----------------------

Operation	DCS FullAccess	DCS UserAccess	DCS ReadOnlyAccess
Modifying instance configuration parameters	\checkmark	\checkmark	×
Deleting background tasks	\checkmark	\checkmark	×
Accessing instances using Web CLI	\checkmark	\checkmark	×
Modifying instance running status	\checkmark	\checkmark	×
Expanding instance capacity	\checkmark	×	×
Changing instance passwords	\checkmark	\checkmark	×
Modifying DCS instances	\checkmark	×	×

Operation	DCS FullAccess	DCS UserAccess	DCS ReadOnlyAccess
Performing a master/ standby switchover	√	\checkmark	×
Backing up instance data	\checkmark	\checkmark	×
Analyzing big keys or hot keys	\checkmark	\checkmark	×
Creating DCS instances	\checkmark	×	×
Deleting instance backup files	\checkmark	\checkmark	×
Restoring instance data	\checkmark	\checkmark	×
Resetting instance passwords	\checkmark	\checkmark	×
Migrating instance data	\checkmark	\checkmark	×
Downloading instance backup data	√	\checkmark	×
Deleting DCS instances	\checkmark	×	×
Querying instance configuration parameters	√	\checkmark	\checkmark
Querying instance restoration logs	\checkmark	\checkmark	\checkmark
Querying instance backup logs	\checkmark	\checkmark	\checkmark
Querying DCS instances	\checkmark	\checkmark	\checkmark

Operation	DCS FullAccess	DCS UserAccess	DCS ReadOnlyAccess
Querying instance background tasks	√	\checkmark	√
Querying all instances	\checkmark	\checkmark	\checkmark
Viewing instance performance metrics	\checkmark	\checkmark	√
Slow query	\checkmark	\checkmark	\checkmark
Modifying parameters in a parameter template	√	\checkmark	×
Deleting a parameter template	\checkmark	\checkmark	×
Creating a parameter template	\checkmark	\checkmark	×
Parameter template list	\checkmark	\checkmark	\checkmark
Querying a parameter template	\checkmark	\checkmark	

1.13 Related Services

DCS is used together with other services, including VPC, ECS, IAM, Cloud Eye, CTS, and Object Storage Service (OBS).

Figure 1-14 Relationships between DCS and other services

VPC

A VPC is an isolated virtual network environment on the cloud. You can configure IP address ranges, subnets, and security groups in a VPC.

DCS runs in VPCs. The VPC service manages EIPs and bandwidth, and provides security groups. You can configure access rules for security groups to secure the access to DCS.

ECS

An ECS is a cloud server that provides scalable, on-demand computing resources for secure, flexible, and efficient applications.

You can access and manage your DCS instances using an ECS.

IAM

IAM provides identity authentication, permissions management, and access control.

With IAM, you can control access to DCS.

Cloud Eye

Cloud Eye is a secure, scalable, and integrated monitoring service. With Cloud Eye, you can monitor your DCS service and configure alarm rules and notifications.

Cloud Trace Service (CTS)

CTS provides you with a history of operations performed on cloud service resources. With CTS, you can query, audit, and backtrack operations. The traces include the operation requests sent using the management console or open APIs and the results of these requests.

OBS

OBS provides secure, cost-effective storage service using objects as storage units. With OBS, you can store and manage the lifecycle of massive amounts of data.

You can store DCS instance backup files in OBS.

2 Permissions Management

2.1 Creating a User and Granting DCS Permissions

This chapter describes how to use **IAM** to implement fine-grained permissions control for your DCS resources. With IAM, you can:

- Create IAM users for employees based on your enterprise's organizational structure. Each IAM user will have their own security credentials for accessing DCS resources.
- Grant only the permissions required for users to perform a specific task.
- Entrust an account or cloud service to perform efficient O&M on your DCS resources.

If your account does not need individual IAM users, you may skip over this chapter.

This section describes the procedure for granting the **DCS ReadOnlyAccess** permission (see **Figure 2-1**) as an example.

Prerequisites

You are familiar with the permissions (see **Permissions**) supported by DCS and choose policies or roles according to your requirements. For the permissions of other services, see **Permissions**.

Process Flow

Figure 2-1 Process of granting DCS permissions

1. Create a user group and assign permissions to it.

Create a user group on the IAM console, and attach the **DCS ReadOnlyAccess** policy to the group.

2. Create an IAM user.

Create a user on the IAM console and add the user to the group created in 1.

3. Log in and verify permissions.

Log in to the DCS console by using the newly created user, and verify that the user only has read permissions for DCS.

2.2 DCS Custom Policies

Custom policies can be created to supplement the system-defined policies of DCS. For the actions that can be added to custom policies, see **Permissions Policies and Supported Actions**.

You can create custom policies in either of the following ways:

- Visual editor: Select cloud services, actions, resources, and request conditions. This does not require knowledge of policy syntax.
- JSON: Edit JSON policies from scratch or based on an existing policy.

For details, see **Creating a Custom Policy**. The following section contains examples of common DCS custom policies.

NOTE

Due to data caching, a policy involving OBS actions will take effect five minutes after it is attached to a user, user group, or project.

Example Custom Policies

 Example 1: Allowing users to delete and restart DCS instances and clear data of an instance

• Example 2: Denying DCS instance deletion

A policy with only "Deny" permissions must be used in conjunction with other policies to take effect. If the permissions assigned to a user contain both "Allow" and "Deny", the "Deny" permissions take precedence over the "Allow" permissions.

The following method can be used if you need to assign permissions of the **DCS FullAccess** policy to a user but you want to prevent the user from deleting DCS instances. Create a custom policy for denying DCS instance deletion, and attach both policies to the group to which the user belongs. Then, the user can perform all operations on DCS instances except deleting DCS instances. The following is an example of a deny policy:

```
{
    "Version": "1.1",
    "Statement": [
        {
            "Effect": "Deny",
            "Action": [
                "dcs:instance:delete"
            ]
        }
    ]
}
```

3 Accessing and Using DCS

Accessing DCS

You can access Distributed Cache Service (DCS) from the web-based management console or by using RESTful application programming interfaces (APIs) through HTTPS requests.

• Using the management console

Log in to the management console and choose **Distributed Cache Service** from the service list.

For details on how to use the DCS console, see chapters in this document.

DCS monitoring data is recorded by Cloud Eye. To view the monitoring metrics or configure alarm rules, go to the Cloud Eye console. For details, see **Viewing DCS Monitoring Metrics**.

If you have enabled Cloud Trace Service (CTS), DCS instance operations are recorded by CTS. You can view the operations history on the CTS console. For details, see **Viewing Traces on the CTS Console**.

• Using APIs

DCS provides RESTful APIs for you to integrate DCS into your own application system. For details about DCS APIs and API calling, see the *Distributed Cache Service API Reference*.

NOTICE

- 1. All available functions can be used on the console. Some functions can also be used through APIs. For more information on how to use functions through APIs, see the *Distributed Cache Service API Reference*.
- 2. For details about APIs for monitoring and auditing, see the Cloud Eye and Cloud Trace Service (CTS) documentation.

Using DCS

After purchasing a DCS instance, access it by referring to **Accessing an Instance**. Any client that is compatible with the open-source Redis protocol can respectively access a DCS Redis instance. After accessing a DCS instance, you can enjoy the fast read/write operations enabled by DCS.

NOTICE

DCS does not involve sensitive user information. Which, why, when, and how data is processed with DCS must comply with local laws and regulations. If sensitive data needs to be transmitted or stored, encrypt data before transmission or storage.

For details on how to access a DCS instance, see the following figure.

D NOTE

- Currently, a DCS instance can be accessed over an internal network through an Elastic Cloud Server (ECS) that is in the same Virtual Private Cloud (VPC) as the DCS instance.
- If public access is enabled, a DCS Redis 3.0 instance can be accessed through an elastic IP address (EIP) over a public network.

4 Getting Started

4.1 Creating an Instance

4.1.1 Identifying Requirements

Before creating a DCS instance, identify your requirements and complete the following preparations:

1. Decide on the required cache engine version.

Different Redis versions have different features. For details, see **Comparing Redis Versions**.

2. Decide on the required instance type.

DCS provides single-node, master/standby, Proxy Cluster, and Redis Cluster types of instances. Each type has its own architecture. For details about the instance architectures, see **DCS Instance Types**.

3. Decide on the required instance specification.

Each specification specifies the maximum available memory, number of connections, and bandwidth. For details, see **DCS Instance Specifications**

4. Decide on the region and whether cross-AZ deployment is required.

Choose a region closest to your application to reduce latency.

A region consists of multiple availability zones (AZs) with physically isolated power supplies and networks. Master/standby and cluster DCS instances can be deployed across AZs.

NOTE

- If a master/standby or cluster DCS instance is deployed across AZs, faults in an AZ do not affect cache nodes in other AZs. This is because when the master node is faulty, the standby cache node will automatically become the master node to provide services. Such deployment achieves better disaster recovery.
- Deploying a DCS instance across AZs slightly reduces network efficiency compared with deploying an instance within an AZ. Therefore, if a DCS instance is deployed across AZs, synchronization between master and standby cache nodes is slightly less efficient.

5. Decide whether backup policies are required.

Currently, backup policies can be configured only for master/standby and cluster DCS instances. For details about backup and restoration, see **Overview**.

4.1.2 Preparing Required Resources

To access DCS instances through a Virtual Private Cloud (VPC), create a VPC and configure security groups and subnets for it before using DCS. A VPC provides an isolated virtual network environment which you can configure and manage. Using VPCs enhances cloud resource security and simplifies network deployment.

Once you have created the required resources, you can use them for all DCS instances you subsequently create.

Creating a VPC and Subnet

Step 1 Log in to the management console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** Click **Service List**, and choose **Network** > **Virtual Private Cloud** to launch the VPC console.
- Step 4 Click Apply for VPC.
- **Step 5** Create a VPC as prompted, retaining the default values unless otherwise required.

For details about how to create a VPC, see "VPC and Subnet" > "VPC" > "Creating a VPC" in *Virtual Private Cloud User Guide*.

After a VPC is created, a subnet is also created in the subnet. If the VPC needs more subnets, go to **Step 6** and **Step 7**. Otherwise, go to **Creating a Security Group**.

- When creating a VPC, **CIDR Block** indicates the IP address range of the VPC. If this parameter is set, the IP addresses of subnets in the VPC must be within the IP address range of the VPC.
- If you create a VPC to provision DCS instances, you do not need to configure the CIDR block for the VPC.
- **Step 6** In the navigation pane on the left, choose **Virtual Private Cloud** > **Subnets**.
- **Step 7** Click **Create Subnet**. Create a subnet as prompted, retaining the default values unless otherwise required.

For details about how to create a subnet, see "VPC and Subnet" > "Subnet" in *Virtual Private Cloud User Guide*.

----End

Creating a Security Group

NOTE

Only DCS Redis 3.0 instances require security groups.

Step 1 Log in to the VPC console.

Step 2 In the navigation pane on the left, choose **Access Control** > **Security Groups** and then click **Create Security Group** in the upper right corner of the displayed page. Create a security group as prompted, retaining the default values unless otherwise required.

For details about how to create a security group, see "Security" > "Security Group" > "Creating a Security Group" in *Virtual Private Cloud User Guide*.

- Set **Template** to **Custom**.
- After a security group is created, retain the default inbound rule that allows communication among ECSs within the security group and the default outbound rule that allows all outbound traffic.
- To use DCS, you must add the security group rules described in the following table. You can also add other rules based on site requirements.

Directi on	Protocol	Port	Source	Description
Inboun d	ТСР	36379	0.0.0.0/0	Access a DCS Redis 3.0 instance (with SSL encryption enabled) through a public network.
Inboun d	ТСР	6379	0.0.0.0/0	Access a DCS Redis 3.0 instance (with SSL encryption disabled) through a public network.
Inboun d	ТСР	6379	0.0.0/0	Access a DCS Redis 3.0 instance in a private network. (SSL encryption is not supported.)

Table 4-1 Security group rules

----End

(Optional) Assigning an EIP

NOTE

If you want to access a DCS Redis 3.0 instance through a public network, assign an EIP.

- **Step 1** Log in to the management console.
- **Step 2** Click **Service List**, and choose **Network** > **Elastic IP** to launch the VPC console.
- Step 3 Click Assign EIP.

For details about how to assign an EIP, see chapter "Elastic IP" in the *Elastic IP User Guide*.

----End

4.1.3 Creating a DCS Redis Instance

You can create one or more DCS Redis instances with the required computing capabilities and storage space based on service requirements.

Prerequisites

You have prepared necessary resources.

Creating a DCS Redis Instance

Step 1 Log in to the DCS console.

- **Step 2** Click Sin the upper left corner of the management console and select a region and a project.
- Step 3 Click Create DCS Instance.
- Step 4 Select a region closest to your application to reduce latency and accelerate access.
- **Step 5** Specify the following instance parameters based on the information collected in **Identifying Requirements**.
 - 1. Cache Engine:

Select Redis.

2. Version:

Currently, versions 3.0/4.0/5.0/6.0 are supported.

NOTE

- When creating a Proxy Cluster instance, you can select versions 3.0, 4.0, or 5.0.
- When creating a Redis Cluster instance, you can select versions 4.0 or 5.0.
- The Redis version cannot be changed once the instance is created. To use a later Redis version, create another DCS Redis instance and then migrate data from the old instance to the new one.
- The method of connecting a client to a Redis Cluster instance is different from that of connecting a client to other types of instances. For details, see Accessing a DCS Redis Instance Through redis-cli.
- 3. Set Instance Type to Single-node, Master/Standby, Proxy Cluster or Redis Cluster.
- 4. Set CPU Architecture to x86.
- 5. Set **Replicas**. The default value is **2** (including the master).

This parameter is displayed only when you select Redis 4.0/5.0/6.0 and the instance type is master/standby or Redis Cluster.

6. Select an AZ.

If the instance type is master/standby, Proxy Cluster, or Redis Cluster, **Standby AZ** is displayed. Select a standby AZ for the standby node of the instance.

NOTE

- To accelerate access, deploy your instance and your application in the same AZ.
- There are multiple AZs in each region. If resources are insufficient in an AZ, the AZ will be unavailable. In this case, select another AZ.

7. Instance Specification:

The remaining quota is displayed on the console.

To apply to increase quota, click **Increase quota** below the specifications.

Figure 4-1 Buying a DCS Redis instance

Cache Engine	Redis									
Version	6.0	5.0	4.0	3.0						
Instance Type	Master/Standby	Single-node	Proxy Cluster	Redis Cluster	0					
	Backup Failover Persistence									
CPU Architecture	x86									
Replicas	- 2 + 🤊									
Primary AZ	AZ1	AZ2								
Standby AZ	AZ1	A22								
Instance Specification	Flavor Name			Cache Size	Shards	Max. Available Memory	Max. Connections (Default/Limit)	Assured/Max. Bandwidth ③	DBs	IP Addresses
	redis.ha.xu1.tiny.r2.128			128 MB	1	128 MB	10,000/10,000	40/40 Mbit/s	256	2
	oredis.haxu1.tiny.r2.256			256 MB	1	256 MB	10,000/10,000	80/80 Mbit/s	256	2
	 redis.haxu1.tiny.r2.512 			512 MB	1	512 MB	10,000/10,000	80/80 Mbit/s	256	2
	 redisha.xu1.large.r2.1 			1 GB	1	1 GB	10,000/50,000	80/80 Mbit/s	256	2
	o redisha.xu1.large.r2.2			2 GB	1	2 GB	10,000/50,000	128/128 Mbit/s	256	2
	 redis.ha.xu1.large.r2.4 			4 GB	1	4 GB	10,000/50,000	192/192 Mbit/s	256	2

Step 6 Configure the instance network parameters.

- 1. Select a VPC and a subnet.
- 2. Configure the IP address.

Redis Cluster instances only support automatically-assigned IP addresses. The other instance types support both automatically-assigned IP addresses and manually-specified IP addresses. You can manually specify an IP address available in your subnet.

For a DCS Redis 4.0 or later instance, you can specify a port numbering in the range from 1 to 65535. If no port is specified, the default port 6379 will be used. For a DCS Redis 3.0 instance, the port cannot be customized. Port 6379 will be used.

3. Select a security group.

A security group is a set of rules that control access to ECSs. It provides access policies for mutually trusted ECSs with the same security protection requirements in the same VPC.

This parameter is displayed only for DCS Redis 3.0 instances. DCS Redis 4.0/5.0/6.0 instances are based on VPC endpoints and do not support security groups. To control access to a DCS Redis 4.0/5.0/6.0 instance, configure a whitelist after instance creation. For details, see **Managing IP Address Whitelist**.

Step 7 Set the instance password.

• Select Yes or No for Password Protected.

NOTE

- Password-free access carries security risks. Exercise caution when selecting this mode.
- If you are to enable public access for a DCS Redis 3.0 instance, you must select the password-protected mode and set a password.
- After creating a DCS Redis instance to be accessed in password-free mode, you can set a password for it by using the password reset function. For details, see Changing Password Settings for DCS Redis Instances.

• **Password** and **Confirm Password**: These parameters indicate the password of accessing the DCS Redis instance, and are displayed only when **Password Protected** is set to **Yes**.

NOTE

For security purposes, if password-free access is disabled, the system prompts you to enter an instance-specific password when you are accessing the DCS Redis instance. Keep your instance password secure and change it periodically.

Step 8 Configure Parameter Configuration.

You can select **Default Templates** or **Use custom template**.

NOTE

- On the instance creation page, the default parameter templates are used by default.
- If you use a custom template, the selected cache engine version and instance type must match those of the template. For details about using custom templates, see **Creating a Custom Parameter Template**.

Step 9 Choose whether to enable Auto Backup.

This parameter is displayed only when the instance type is master/standby or cluster. For more information on how to configure a backup policy, see **Overview**.

- **Step 10** Specify the quantity.
- **Step 11** Enter an instance name and select an enterprise project.

The value of **Name** contains at least 4 characters. When you create multiple instances at a time, the instances are named in the format of *custom name-n*, where *n* starts from 000 and is incremented by 1. For example, if you create two instances and set **name** to **dcs_demo**, the two instances are respectively named as **dcs_demo-000** and **dcs_demo-001**.

Step 12 Click **More Settings** to configure more parameters.

- 1. Enter a description of the instance.
- 2. Configure public access.
 - Only DCS Redis 3.0 instances support public access.
- 3. Rename critical commands.

Command Renaming is displayed for Redis 4.0 and later. Currently, you can only rename the **COMMAND**, **KEYS**, **FLUSHDB**, **FLUSHALL**, **HGETALL**, **SCAN**, **HSCAN**, **SSCAN**, and **ZSCAN** commands.

4. Specify tags.

Tags are used to identify cloud resources. When you have many cloud resources of the same type, you can use tags to classify cloud resources by dimension (for example, by usage, owner, or environment).

- If you have created predefined tags, select a predefined pair of tag key and value. Click View predefined tags. On the Tag Management Service (TMS) console, view predefined tags or create new tags.
- You can also add a tag by entering the tag key and value. For details about tag naming requirements, see Managing Tags.

Step 13 Click Create Now.

The displayed page shows the instance information you have specified.

- **Step 14** Confirm the instance information and click **Submit**.
- **Step 15** Return to the **Cache Manager** page to view and manage your DCS instances.
 - 1. Creating a single-node or master/standby DCS Redis 3.0 instance takes 5 to 15 minutes. Creating a cluster DCS Redis 3.0 instance takes 30 minutes.DCS Redis 4.0 and later instances are containerized and can be created within seconds.
 - 2. After a DCS instance has been successfully created, it enters the **Running** state by default.

----End

4.2 Accessing an Instance

4.2.1 Restrictions

You can access a DCS instance through any Redis client. For details about Redis clients, see the **Redis official website**.

- To access a DCS Redis instance through a client on an ECS in the same VPC as the instance, note that:
 - An ECS and a DCS instance can communicate with each other only when they belong to the same VPC. **Redis 3.0:** The instance and the ECS must either be configured with the same security group or use different security groups but can communicate with each other as configured by the security group rules. **Redis 4.0/5.0/6.0:** The IP address of the ECS must be on the whitelist of the DCS instance.
 - If the ECS and DCS Redis instance are in different VPCs, establish a VPC peering connection to achieve network connectivity between the ECS and DCS instance. For details, see **Does DCS Support Cross-VPC Access?**
- Before accessing a DCS Redis 3.0 instance over public networks, ensure that:

Security group rules have been correctly configured for the instance. If SSL encryption is disabled, allow public access through port 6379. If SSL encryption is enabled, allow public access through port 36379. For details, see **Security Group Configurations**.

• Domain names cannot be resolved across regions. If the client and the DCS Redis instance are not in the same region, the instance cannot be accessed at its domain name address. You can manually map the domain name to the IP address in the **hosts** file or access the instance at its IP address.

4.2.2 Public Access to a DCS Redis 3.0 Instance

4.2.2.1 Step 1: Check Whether Public Access Is Supported

You can access a DCS Redis 3.0 instance over public networks. In comparison with intra-VPC access, public access may bring packet loss, jitter, and higher latency. Therefore, you are advised to enable public access only during the service development and testing phases.

Before connecting to a DCS instance over public networks, check whether the instance supports public access.

Redis 3.0

Currently, **only DCS Redis 3.0 instances support public access**. You can enable or disable public access.

- Redis 4.0/5.0/6.0
 Public access is not supported by DCS Redis 4.0/5.0/6.0 instances.
- Memcached
 Public access is not supported by DCS Memcached instances.

Procedure

On the **Basic Information** page of the instance, check the following parameter settings:

- Cache Engine: Must be Redis 3.0. If not, public network access is not supported.
- **Password Protected**: Must be **Yes**. If not, enable password protection for the instance by referring to **FAQs**.
- Public Access: Must be On. If not, enable public access by referring to Step 2: Enable Public Access for a DCS Redis Instance.

Figure 4-2 Checking the cache engine version, password protection, and public access

Instance Details		Connection ②		
Name	dcs-dcstest 🖉	Password Protected	Yes	
Status	Running	Connection Address	redis-ddc5	om:6379 🗇
ID	ddc534/ :bd2b 🗗	IP Address	10.II.1 138:6379 🗇	
Cache Engine	Redis 3.0	Public Access	Onl ?	
Instance Type	Single-node		Public Access Address	18 :6379
Cache Size	2 GB		SSL	On 🛅 Download Certificate for Public Access
Used/Available Memory (MB)	3/1,536 (0.2%) ⑦			

FAQs

• What can I do if the public access button is grayed out when the instance is not password-protected?

In the upper right corner of the **Basic Information** page, choose **More** > **Reset Password**. After the password is reset, the **Password Protected** parameter changes to **Yes**. The public access button can be clicked now.

- How do I disable SSL encryption when public access has been enabled? SSL encryption is enabled by default when you enable public access. To disable SSL encryption, perform the following steps:
 - a. Open the page for configuring public access.

	Connection ⑦				
	Password Protected	Yes			
	Connection Address	redis-dd		n:6379 🗖	
	IP Address	10.2 .138:6379 🗖			
	Public Access	On∠ ?			
		Public Access Address	1	6379	
		SSL	On 🛅 Down	load Certificate for Public Acc	ess
b.	Disable SSL enc	ryption, and clic	k OK .		
	Modify Public	c Access Configu	ration		×
	Public Access				
	Elastic IP Address	bit discher die			
	SSL				

c. In the **Connection** area on the instance details page, **SSL** is disabled.

Cancel

4.2.2.2 Step 2: Enable Public Access for a DCS Redis Instance

If public access has been enabled for the instance, skip this section.

ОK

If public access is not enabled, follow the instructions in this section. You can enable or disable SSL encryption when enabling public access.

NOTE

- Before accessing a DCS instance through a public network (with SSL encryption), download a CA certificate to verify the certificate of the instance for security purposes.
- When accessing a DCS instance through a public network (without SSL encryption), access the EIP and port 6379 of the instance. You do not need to download certificates or install Stunnel on your client.
- You are advised to enable SSL to encrypt the data transmitted between your Redis client and DCS instance to prevent data leakage.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click ¹ in the upper left corner of the management console and select a region.

D NOTE

Select the same region as your application service.

- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS Redis instance you want to configure. A page with basic information about the DCS instance is displayed.
- **Step 5** Click on the right of **Public Access**.
- **Step 6** Click **O** to enable public access.
- Step 7 Select an EIP from the Elastic IP Address drop-down list.

If no EIPs are available, click **View Elastic IP** to create an EIP on the network console. After an EIP is created, click the refresh button on the right of **Elastic IP Address** to select the new EIP.

Step 8 (Optional) Enable or disable SSL as required.

You are advised to enable SSL to encrypt the data transmitted between your Redis client and DCS instance to prevent data leakage.

Step 9 Click OK.

It takes 1 to 2 minutes to enable public access.

You will be automatically redirected to the **Background Tasks** page, where the progress of the current task is displayed. If the task status is **Succeeded**, public access is successfully enabled.

----End

4.2.2.3 Step 3: Access a DCS Redis Instance in Windows

This section describes how to access a DCS Redis 3.0 instance over a public network by using redis-cli in Windows.

Public access helps R&D personnel establish local environment for development or testing, improving development efficiency. However, in the production environment (official environment), access a DCS Redis instance through a VPC to ensure efficient access.

Prerequisites

Before using redis-cli to access a DCS Redis instance over a public network, ensure that:

- The instance version is Redis 3.0 and public access has been enabled.
- If certificates are required for accessing the DCS instance, download the certificate from the DCS instance details page.

Connecting to Redis with SSL Encryption

Step 1 Ensure that the security group rule allows public access through port 36379.

When SSL encryption is enabled, allow public access through port 36379 and install the Stunnel client.

Figure 4-3	Security	group	rule	(port 36379)
	· · · · · j	J · · ·		VI

summary Inbound Rules Associated Instances				
Add Rule Fast-Add Rule Delete Allow Common P	orts Inbound Rules: 7 Learn more	about security group configuration.		
Protocol & Port 7 ?	Туре	Source ⑦		
All	IPv4	sg-DCS (?)		
ICMP : All	IPv4	0.0.0.0/0 (?)		
TCP : 22	IPv4	0.0.0.0/0 (?)		
TCP:80	IPv4	0.0.0.0/0 (?)		
TCP : 443	IPv4	0.0.0.0/0 (?)		
TCP: 3389	IPv4	0.0.0.0/0 (?)		
TCP: 36379	IPv4	192.		

- **Step 2** Obtain the public access address and the certificates of the instance on the instance **Basic Information** page.
 - The public access address is displayed in the **Connection** section.
 - The certificates can be downloaded by clicking Download Certificate for Public Access in the Connection section. After decompression, you will obtain dcs-ca.cer (the public key certificate in binary format) and dcs-cabundle.pem (the certificate file in text format).

Figure 4-4 Viewing the public access address (SSL enabled; port 36379)

Public Access	On 🖉 ?	
	Public Access Address	13 36379
	SSL	On 上 Download Certificate for Public Access

- Step 3 Download the latest Windows Stunnel installation package (for example, stunnel-5.44-win32-installer.exe) from https://www.stunnel.org/ downloads.html to the local Windows device.
- **Step 4** Run the Stunnel installation program and install the Stunnel client.
- **Step 5** Configure the Stunnel client: Right-click **O** on the taskbar and choose **Edit Configuration**. Add the following configuration and then save and exit.

[redis-client] client = yes CAfile = D:\tmp\dcs\dcs-ca.cer accept = 8000 connect = {*public access address*}

In the configuration:

- client: indicates Stunnel. The fixed value is yes.
- CAfile: specifies a CA certificate, which is optional. If a CA certificate is required, download and decompress the certificate dcs-ca.cer as instructed in Step 2. If it is not required, delete this parameter.
- **accept**: specifies the user-defined listening port number of Stunnel. Specify this parameter when accessing a DCS instance by using a Redis client.
- **connect**: specifies the service address and port number of Stunnel. Set this parameter to the instance public access address obtained in **Step 2**.

When SSL encryption is enabled, the configuration is similar to the following:

```
[redis-client]
client = yes
CAfile = D:\tmp\dcs\dcs-ca.cer
accept = 8000
connect = 49.**.**.211:36379
```

- **Step 6** Right-click **O** on the taskbar and choose **Reload Configuration**.
- **Step 7** Open the CLI tool **cmd.exe** and run the following command to check whether 127.0.0.1:8000 is being listened:

netstat -an |find "8000"

Assume that port 8000 is configured as the listening port on the client.

If **127.0.0.1:8000** is displayed in the returned result and its status is **LISTENING**, the Stunnel client is running properly. When the Redis client connects to the address **127.0.0.1:8000**, Stunnel will forward requests to the DCS Redis instance.

- **Step 8** Access the DCS Redis instance.
 - 1. Obtain and decompress the Redis client installation package.

The Windows Redis client installation package can be downloaded here

2. Open the CLI tool **cmd.exe** and run commands to go to the directory where the decompressed Redis client installation package is saved.

For example, to go to the **D:\redis-64.3.0.503** directory, run the following commands:

D:

cd D:\redis-64.3.0.503

 Run the following command to access the chosen DCS Redis instance: redis-cli -h 127.0.0.1 -p 8000 -a password>

▲ CAUTION

In the preceding command:

- The address following -h indicates the address of the Stunnel client, which is 127.0.0.1.
- The port following -p is the listening port of the Stunnel client, which has been configured in the accept field in Step 5. 8000 is used an example here.

Do not use the public access address and port displayed on the console for the -h and -p parameters.

<password> indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed:

127.0.0.1:8000>

Enter **info** and the DCS instance information will be returned. If no information is returned or the connection is interrupted, right-click the Stunnel icon on the taskbar and choose **Show Log Window** from the shortcut menu to show logs of Stunnel for cause analysis.

```
----End
```

Connecting to Redis Without SSL Encryption

Step 1 Ensure that the security group rule allows public access through port 6379.

When SSL encryption is disabled, the instance public access address can be accessed only if access through port 6379 is allowed.

Figure 4-5 Security group rule (port 6379)

< sg-DCS	
Summary Inbound Rules Outbound Rules Associated Instances	
Add Rule Fast-Add Rule Delete Allow Common Ports Inbound Rules: 7	Learn more about security group configuration.
Protocol & Port 🏹 🕐	Source (?)
All IPv4	sg-DCS 🕐
ICMP : All IPv4	0.0.0.0/0 ⑦
C TCP : 22 IPv4	0.0.0.0/0 (?)
C TCP : 80 IPv4	0.0.0.0/0 (?)
C TCP : 443 IPv4	0.0.0.0/0 (?)
TCP : 3389 IPv4	0.0.0.0/0 ⑦
TCP : 6379 IPv4	192.101.64/32

Step 2 Obtain the public access address of the instance.

The public access address is displayed in the **Connection** section.

Figure 4-6 Viewing the public access address (SSL disabled; port 6379)

Step 3 Obtain and decompress the Redis client installation package.

The Windows Redis client installation package can be downloaded here

Step 4 Open the CLI tool **cmd.exe** and run commands to go to the directory where the decompressed Redis client installation package is saved.

For example, to go to the **D:\redis-64.3.0.503** directory, run the following commands:

D:

cd D:\redis-64.3.0.503

Step 5 Run the following command to access the chosen DCS Redis instance:

redis-cli -h {public network access IP} -p 6379 -a <password>

In this command, *{public network access IP}* indicates the IP address of the DCS Redis instance obtained in **Step 2**. *<password>* indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed:

139.**.**.175:6379>

Enter info and the DCS instance information will be returned.

----End

Troubleshooting

• **Symptom**: "Error: Connection reset by peer" is displayed or a message is displayed indicating that the remote host forcibly closes an existing connection.

Possible cause 1: The security group is incorrectly configured. You need to enable port **36379** or **6379**.

Possible cause 2: SSL encryption has been enabled, but Stunnel is not configured during connection. The IP address displayed on the console was used for connection. In this case, strictly follow the instructions provided in **Connecting to Redis with SSL Encryption**.

• For more information about Redis connection failures, see **Troubleshooting Redis Connection Failures**.

4.2.2.4 Step 3: Access a DCS Redis Instance in Linux

This section describes how to access a DCS Redis 3.0 instance over a public network by using redis-cli in Linux.

Public access helps R&D personnel establish local environment for development or testing, improving development efficiency. However, in the production environment (official environment), access a DCS Redis instance through a VPC to ensure efficient access.

Prerequisites

Before using redis-cli to access a DCS Redis instance over a public network, ensure that:

- The instance version is Redis 3.0 and public access has been enabled.
- If certificates are required for accessing the DCS instance, download the certificate from the DCS instance details page.

Connecting to Redis with SSL Encryption

Step 1 Ensure that the security group rule allows public access through port 36379.

When SSL encryption is enabled, allow public access through port 36379. Ensure that the Stunnel client has been installed.

Figure 4-7 Security group rule (port 36379)

< sg-DCS		
Summary Inbound Rules Outbound Rules Associated Ins	tances	
Add Rule Fast-Add Rule Delete Allow Common Ports	Inbound Rules: 7 Learn more	about security group configuration.
Protocol & Port 7 ?	Туре	Source 🕐
All	IPv4	sg-DCS 🕐
ICMP : All	IPv4	0.0.0.0/0 (?)
TCP:22	IPv4	0.0.0.0/0 (?)
TCP : 80	IPv4	0.0.0.0/0 (?)
TCP: 443	IPv4	0.0.0.0/0 (?)
TCP : 3389	IPv4	0.0.0.0/0 (?)
TCP: 36379	IPv4	192. 194.64/32

- **Step 2** Obtain the public access address and the certificates of the instance on the instance **Basic Information** page.
 - The public access address is displayed in the Connection section.
 - The certificates can be downloaded by clicking **Download Certificate for Public Access** in the **Connection** section. After decompression, you will obtain **dcs-ca.cer** (the public key certificate in binary format) and **dcs-cabundle.pem** (the certificate file in text format).

Figure 4-8 Viewing the public access address (SSL enabled; port 36379)

Public Access	On 🖉 ?	
	Public Access Address	13 36379
	SSL	On 🛓 Download Certificate for Public Access

- **Step 3** Log in to the local Linux device.
- **Step 4** Install the Stunnel client.

Use either of the following methods to install Stunnel.

D NOTE

Installation methods **apt** and **yum** are recommended. Any common Linux OSs should support at least one of these installation methods.

• apt-get method:

apt-get is used to manage DEB software packages and applicable to Debian OSs such as Ubuntu. Run the following command to install Stunnel:

apt install stunnel or apt-get install stunnel

If you cannot find Stunnel after running the command, run the **apt update** command to update the configuration and then install Stunnel again.

• **yum** method:

yum is used to manage RPM software packages and applicable to OSs such as Fedora, CentOS, and Red Hat. Run the following command to install Stunnel:

yum install stunnel

Step 5 Open the Stunnel configuration file **stunnel.conf**.

• If Stunnel is installed using **apt-get**, the configuration file is stored at the **/etc/stunnel/stunnel.conf** directory by default.

If this directory does not exist or no configuration file exists in it, add a directory or configuration file.

• If Stunnel is installed using **yum**, the configuration file is stored at the **/usr/ local/stunnel/stunnel.conf** directory by default.

If this directory does not exist or no configuration file exists in it, add a directory or configuration file.

D NOTE

- If you are not sure where to store the configuration file, enter the **stunnel** command after the installation to view the directory for storing the configuration file.
- The configuration file can be stored in any directory. Specify this configuration file when starting Stunnel.
- **Step 6** Add the following content to the configuration file **stunnel.conf**, and then save and exit.

debug = 4
output = /var/log/stunnel.log
sslVersion = all
[redis-client]
client = yes
accept = 8000
connect = {public access address}
CAfile = /etc/stunnel/dcs-ca.cer

Modify the following parameters as required and leave other parameters unchanged:

- client: indicates Stunnel. The fixed value is yes.
- **CAfile**: specifies a CA certificate, which is optional. If a CA certificate is required, download and decompress the certificate **dcs-ca.cer** as instructed in **Step 2**. If it is not required, delete this parameter.
- **accept**: specifies the user-defined listening port number of Stunnel. Specify this parameter when accessing a DCS instance by using a Redis client.
• **connect**: specifies the forwarding address and port number of Stunnel. Set this parameter to the instance public access address obtained in **Step 2**.

The following is a configuration example:

[redis-client]
client = yes
CAfile = D:\tmp\dcs\dcs-ca.cer
accept = 8000
connect = 49.**.**.211:36379

Step 7 Run the following commands to start Stunnel:

stunnel /{customdir}/stunnel.conf

In the preceding command, **{customdir}** indicates the customized storage directory for the **stunnel.conf** file described in **Step 5**. The following is a command example:

stunnel /etc/stunnel/stunnel.conf

NOTE

For the Ubuntu OS, run the **/etc/init.d/stunnel4 start** command to start Stunnel. The service or process name is **stunnel4** for the Stunnel 4.x version.

After starting the Stunnel client, run the **ps** -**ef**|**grep stunnel** command to check whether the process is running properly.

Step 8 Run the following command to check whether Stunnel is being listened:

netstat -plunt |grep 8000|grep "LISTEN"

8000 indicates the user-defined listening port number of Stunnel configured in the **accept** field in **Step 6**.

If a line containing the port number **8000** is displayed in the returned result, Stunnel is running properly. When the Redis client connects to the address **127.0.0.1:8000**, Stunnel will forward requests to the DCS Redis instance.

- **Step 9** Access the DCS Redis instance.
 - 1. Log in to the local Linux device.
 - 2. Run the following command to download the source code package of your Redis client from http://download.redis.io/releases/redis-5.0.8.tar.gz:

wget http://download.redis.io/releases/redis-5.0.8.tar.gz

NOTE

You can also install the Redis client by running the following yum or apt command:

- yum install redis
 - apt install redis-server
- 3. Run the following command to decompress the source code package of your Redis client:

tar -xzf redis-5.0.8.tar.gz

4. Run the following commands to go to the Redis directory and compile the source code of your Redis client:

cd redis-5.0.8

make

5. Run the following commands to access the chosen DCS Redis instance: **cd src**

./redis-cli -h 127.0.0.1 -p 8000

∧ CAUTION

In the preceding command:

- The address following -h indicates the address of the Stunnel client, which is 127.0.0.1.
- The port following **-p** is the listening port of the Stunnel client, which has been configured in the **accept** field in **Step 6**. **8000** is used an example.

Do not use the public access address and port displayed on the console for the -h and -p parameters.

6. Enter the password. You can read and write cached data only after the password is verified.

auth {password}

{password} indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed:

OK 127.0.0.1:8000>

----End

Connecting to Redis Without SSL Encryption

Step 1 Ensure that the security group rule allows public access through port 6379.

When SSL encryption is disabled, the instance public access address can be accessed only if access through port 6379 is allowed.

< sg-DCS					
Summary Inbound Rules Outbound Rules Associated Instances					
Add Rule Fast-Add Rule Delete Allow Common Ports Inter-	ound Rules: 7 Learn more	about security group configuration.			
Protocol & Port 7 7	Туре	Source ⑦			
All	IPv4	sg-DCS 🕐			
ICMP : All	IPv4	0.0.0.0/0 (?)			
TCP: 22	IPv4	0.0.0.0/0 ⑦			
TCP: 80	IPv4	0.0.0.0/0 ⑦			
TCP: 443	IPv4	0.0.0/0 ⑦			
TCP: 3389	IPv4	0.0.0/0 ⑦			
TCP: 6379	IPv4	192.1			

Figure 4-9 Security group rule (port 6379)

Step 2 Obtain the public access address of the instance.

The public access address is displayed in the **Connection** section of the instance **Basic Information** page.

Figure 4-10 Viewing the public access address (SSL disabled; port 6379)

Public Access	On 🖉 ?		
	Public Access Address	13 6379	
	SSL	Off	

- **Step 3** Log in to the local Linux device.
- **Step 4** Run the following command to download the source code package of your Redis client from http://download.redis.io/releases/redis-5.0.8.tar.gz:

wget http://download.redis.io/releases/redis-5.0.8.tar.gz

NOTE

You can also install the Redis client by running the following yum or apt command:

- yum install redis
- apt install redis-server
- **Step 5** Run the following command to decompress the source code package of your Redis client:

tar -xzf redis-5.0.8.tar.gz

Step 6 Run the following commands to go to the Redis directory and compile the source code of your Redis client:

cd redis-5.0.8

make

Step 7 Run the following commands to access the chosen DCS Redis instance:

cd src

./redis-cli -h {public access address} -p 6379

Replace {*public access address*} with the address obtained in **Step 2**. For example:

./redis-cli -h 49.**.**.211 -p 6379

Step 8 Enter the password. You can read and write cached data only after the password is verified.

auth {password}

{password} indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed:

OK 49.**.**.211:6379>

----End

Troubleshooting

- Symptom: "Error: Connection reset by peer" is displayed.
 Possible cause: The security group is incorrectly configured. You need to enable port 36379 or 6379.
- When redis-cli is used to connect to an instance, the following message is displayed indicating that the remote host forcibly closes an existing connection.

Possible cause: SSL encryption has been enabled, but Stunnel is not configured during connection. The IP address displayed on the console was used for connection. In this case, strictly follow the instructions provided in **Connecting to Redis with SSL Encryption**.

• For more information about Redis connection failures, see **Troubleshooting Redis Connection Failures**.

4.2.3 Accessing a DCS Redis Instance Through redis-cli

Access a DCS Redis instance through redis-cli on an ECS in the same VPC. For more information on how to use other Redis clients, visit https://redis.io/clients.

To access a DCS Redis 3.0 instance over a public network, see **Step 3: Access a DCS Redis Instance in Windows**.

D NOTE

- Redis 3.0 does not support port customization and allows only port 6379. For Redis 4.0 and later, you can specify a port or use the default port 6379. The following uses the default port 6379. If you have specified a port, replace 6379 with the actual port.
- When connecting to a Redis Cluster instance, ensure that -c is added to the command. Otherwise, the connection will fail.
 - Run the following command to connect to a Redis Cluster instance: ./redis-cli -h {dcs instance address} -p 6379 -a {password} -c
 - Run the following command to connect to a single-node, master/standby, or Proxy Cluster instance:

./redis-cli -h {dcs_instance_address} -p 6379 -a {password}

For details, see Step 3 and Step 4.

• If SSL is enabled for a single-node or master/standby DCS Redis 6.0 instance, set an SSL certificate path.

./redis-cli -h {dcs_instance_address} -p 6379 -a {password} --tls --cacert {certification
file path}

Prerequisites

- The DCS Redis instance you want to access is in the Running state.
- An ECS has been created. For more information on how to create ECSs, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the GCC compilation environment has been installed on the ECS.

Procedure (Linux)

Step 1 Obtain the IP address and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Install redis-cli.

The following steps assume that your client is installed on the Linux OS.

- 1. Log in to the ECS.
- 2. Run the following command to download the source code package of your Redis client from http://download.redis.io/releases/redis-5.0.8.tar.gz:

wget http://download.redis.io/releases/redis-5.0.8.tar.gz

NOTE

The following uses redis-5.0.8 as an example. For details, see the **Redis official website**.

3. Run the following command to decompress the source code package of your Redis client:

tar -xzf redis-5.0.8.tar.gz

4. Run the following commands to go to the Redis directory and compile the source code of your Redis client:

cd redis-5.0.8

make

cd src

Step 3 Access a DCS instance of a type other than Redis Cluster.

Perform the following procedure to access a single-node, master/standby, or Proxy Cluster instance.

./redis-cli -h \${instance IP} -p 6379 -a \${password}

NOTE

- If the instance is password-free, connect it by running the ./redis-cli -h \${instance IP} -p 6379 command.
- 2. If the instance is password-protected, connect it by running the **./redis-cli -h** *\${instance IP}* **-p 6379 -a** *\${password}* command.
- 3. If you forget the instance password or need to reset the password, refer to **Resetting Instance Passwords**.
- 4. *{Instance IP}* can be the **Connection Address** (domain name) or **IP Address**. **Should I Use a Domain Name or an IP Address to Connect to a DCS Redis Instance**?

Connection (?)		
Password Protected	Yes	
Connection Address	redis-dd	n:6379 🗖
IP Address	10.2 .138:6379 🗇	

Step 4 Access a DCS instance of the Redis Cluster type.

Perform the following procedure to access a DCS Redis 4.0 or 5.0 instance in Redis Cluster type.

1. Run the following commands to access the chosen DCS Redis instance:

./redis-cli -h {dcs_instance_address} -p 6379 -a {password} -c

{dcs_instance_address} indicates the IP address/domain name of the DCS Redis instance, **6379** is the port used for accessing the instance, *{password}* is the password of the instance, and **-c** is used for accessing Redis Cluster nodes. The IP address/domain name and port number are obtained in **Step 1**.

Example: root@ecs-redis:~/redis-5.0.8/src# ./redis-cli -h 192.168.0.85 -p 6379 -a ****** -c 192.168.0.85:6379>

2. Run the following command to view the Redis Cluster node information:

cluster nodes

Each shard in a Redis Cluster has a master and a replica by default. The proceeding command provides all the information of cluster nodes.

```
192.168.0.85:6379> cluster nodes
0988ae8fd3686074c9afdcce73d7878c81a33ddc 192.168.0.231:6379@16379 slave
f0141816260ca5029c56333095f015c7a058f113 0 1568084030
000 3 connected
1a32d809c0b743bd83b5e1c277d5d201d0140b75 192.168.0.85:6379@16379 myself,master - 0
1568084030000 2 connected 5461-10922
c8ad7af9a12cce3c8e416fb67bd6ec9207f0082d 192.168.0.130:6379@16379 slave
1a32d809c0b743bd83b5e1c277d5d201d0140b75 0 1568084031
000 2 connected
7ca218299c254b5da939f8e60a940ac8171adc27 192.168.0.22:6379@16379 master - 0 1568084030000
1 connected 0-5460
```

f0141816260ca5029c56333095f015c7a058f113 192.168.0.170:6379@16379 master - 0 1568084031992 3 connected 10923-16383 19b1a400815396c6223963b013ec934a657bdc52 192.168.0.161:6379@16379 slave 7ca218299c254b5da939f8e60a940ac8171adc27 0 1568084031 000 1 connected

Write operations can only be performed on master nodes. The CRC16 of the key modulo 16384 is taken to compute what is the hash slot of a given key.

As shown in the following, the value of **CRC16 (KEY) mode 16384** determines the hash slot that a given key is located at and redirects the client to the node where the hash slot is located at.

192.168.0.170:6379> set hello world -> Redirected to slot [866] located at 192.168.0.22:6379 OK 192.168.0.22:6379> set happy day OK 192.168.0.22:6379> set abc 123 -> Redirected to slot [7638] located at 192.168.0.85:6379 OK 192.168.0.85:6379> get hello -> Redirected to slot [866] located at 192.168.0.22:6379 "world" 192.168.0.22:6379> get abc -> Redirected to slot [7638] located at 192.168.0.85:6379 "123" 192.168.0.85:6379>

----End

Procedure (Windows)

Download the compilation package of the Redis client for Windows. (This is not the source code package.) Decompress the package in any directory, open the CLI tool **cmd.exe**, and go to the directory. Then, run the following command to access the DCS Redis instance:

redis-cli.exe -h XXX -p 6379

XXX indicates the IP address/domain name of the DCS instance and **6379** is an example port number used for accessing the DCS instance. For details about how to obtain the IP address/domain name and port number, see Viewing Details of a DCS Instance. Change the IP address and port as required.

4.2.4 Access in Different Languages

4.2.4.1 Java

4.2.4.1.1 Jedis

Access a DCS Redis instance through Jedis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.

• If the ECS runs the Linux OS, ensure that the Java compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

- **Step 2** Log in to the ECS.
- Step 3 Use Maven to add the following dependency to the pom.xml file:

```
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>4.1.1</version>
</dependency>
```

Step 4 Access the DCS instance by using Jedis.

Obtain the **source code** of the Jedis client. Use either of the following two methods to access a DCS Redis instance through Jedis:

- Single Jedis connection
- Jedis pool

Example code:

 Example of using Jedis to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with a single connection //Creating a connection in password mode String host = "192.168.0.150"; int port = 6379; String pwd = "passwd";

```
Jedis client = new Jedis(host, port);

client.auth(pwd);

client.connect();

//Run the SET command.

String result = client.set("key-string", "Hello, Redis!");

System.out.println( String.format("set command result:%s", result) );

//Run the GET command.

String value = client.get("key-string");

System.out.println( String.format("get command result:%s", value) );
```

//Creating a connection in password-free mode
String host = "192.168.0.150";
int port = 6379;

```
Jedis client = new Jedis(host, port);

client.connect();

//Run the SET command.

String result = client.set("key-string", "Hello, Redis!");

System.out.println( String.format("set command result:%s", result) );

//Run the GET command.

String value = client.get("key-string");

System.out.println( String.format("get command result:%s", value) );
```

host indicates the example IP address/domain name of the DCS instance and *port* indicates the port number of the DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *pwd* indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

```
Example of using Jedis to connect to a single-node, master/standby, or Proxy
2.
     Cluster DCS Redis instance with connection pooling
     //Generate configuration information of a Jedis pool
      String ip = "192.168.0.150";
      int port = 6379;
      String pwd = "passwd";
      GenericObjectPoolConfig config = new GenericObjectPoolConfig();
      config.setTestOnBorrow(false);
      config.setTestOnReturn(false);
      config.setMaxTotal(100);
      config.setMaxIdle(100);
      config.setMaxWaitMillis(2000);
     JedisPool pool = new JedisPool(config, ip, port, 100000, pwd);//Generate a Jedis pool when the
     application is being initialized
     //Get a Jedis connection from the Jedis pool when a service operation occurs
      Jedis client = pool.getResource();
      try {
         //Run commands
         String result = client.set("key-string", "Hello, Redis!");
         System.out.println( String.format("set command result:%s", result) );
         String value = client.get("key-string");
         System.out.println( String.format("get command result:%s", value) );
      } catch (Exception e) {
         // TODO: handle exception
      } finally {
         //Return the Jedis connection to the Jedis pool when the service operation is completed
         if (null != client) {
           pool.returnResource(client);
      } // end of try block
      //Destroy the Jedis pool when the application is closed
      pool.destroy();
     //Configure the connection pool in password-free mode
      String ip = "192.168.0.150";
      int port = 6379;
      GenericObjectPoolConfig config = new GenericObjectPoolConfig();
      config.setTestOnBorrow(false);
      config.setTestOnReturn(false);
      config.setMaxTotal(100);
      config.setMaxIdle(100);
      config.setMaxWaitMillis(2000);
      JedisPool pool = new JedisPool(config, ip, port, 100000);//Generate a JedisPool when the application
     is being initialized
      //Get a Jedis connection from the Jedis pool when a service operation occurs
      Jedis client = pool.getResource();
      try {
         //Run commands
         String result = client.set("key-string", "Hello, Redis!");
         System.out.println( String.format("set command result:%s", result) );
         String value = client.get("key-string");
         System.out.println( String.format("get command result:%s", value) );
      } catch (Exception e) {
         // TODO: handle exception
      } finally {
         //Return the Jedis connection to the Jedis pool when the service operation is completed
         if (null != client) {
           pool.returnResource(client);
      } // end of try block
      //Destroy the Jedis pool when the application is closed
      pool.destroy();
      ip indicates the IP address/domain name of the DCS instance and port
     indicates the port number of the DCS instance. For details about how to
```

indicates the port number of the DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *pwd* indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

3. Example code for connecting to Redis Cluster using a single connection

 With a password
 //The following shows password-protected access. int port = 6379;
 String host = "192.168.144.37";
 //Create JedisCluster.
 Set<HostAndPort> nodes = new HashSet<HostAndPort>(); nodes.add(new HostAndPort(host, port));
 JedisCluster cluster = new JedisCluster(nodes, 5000, 3000, 10, "*password*", new JedisPoolConfig());
 cluster.set("key", "value");
 System.out.println("Connected to RedisCluster:" + cluster.get("key"));
 cluster.close();
 Without a password

Without a password int port = 6379; String host = "192.168.144.37"; //Create JedisCluster. Set<HostAndPort> nodes = new HashSet<HostAndPort>(); nodes.add(new HostAndPort(host, port)); JedisCluster cluster = new JedisCluster(nodes); cluster.set("key", "value"); System.out.println("Connected to RedisCluster:" + cluster.get("key")); cluster.close();

host indicates the example IP address/domain name of the DCS instance and *port* indicates the port number of the DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *password* indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

Step 5 Compile code according to the **readme** file in the source code of the Jedis client. Run the Jedis client to access the chosen DCS Redis instance.

----End

4.2.4.1.2 Lettuce

Access a DCS Redis instance through Lettuce on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the Java compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

- **Step 2** Log in to the ECS.
- Step 3 Use Maven to add the following dependency to the pom.xml file:

<dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>6.1.6.RELEASE</version> </dependency>

Step 4 Use Lettuce (a Java client) to connect to the DCS instance.

- Example of using Lettuce to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with a single connection // password indicates the connection password. If there is no password, delete "password@". If there is a password and it contains special characters, conversion is required. RedisClient redisClient = RedisClient.create("redis://password@host:port"); StatefulRedisConnection<String, String> connection = redisClient.connect(); RedisCommands<String, String> syncCommands = connection.sync(); syncCommands.set("key", "value"); System.out.println("Connected to Redis:" + syncCommands.get("key")); // Close the connection. connection.close(); // Close the client. redisClient.shutdown();
- Example of using Lettuce to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with connection pooling
 - a. Add the following dependency in addition to the preceding Maven dependency:

<dependency>

- <groupId>org.apache.commons</groupId>
 <artifactId>commons-pool2</artifactId>
 <version>2.11.1</version>
 </dependency>
- b. The code is as follows:

// password indicates the connection password. If there is no password, delete "password@". If there is a password and it contains special characters, conversion is required. RedisClient clusterClient = RedisClient.create("redis://password@host:port"); GenericObjectPoolConfig<StatefulRedisConnection<String, String>> genericObjectPoolConfig = new GenericObjectPoolConfig(); // Connection pool parameters genericObjectPoolConfig.setMaxIdle(3); genericObjectPoolConfig.setMinIdle(2); genericObjectPoolConfig.setMaxTotal(3); genericObjectPoolConfig.setMaxWaitMillis(-1); GenericObjectPool<StatefulRedisConnection<String, String>> pool = ConnectionPoolSupport .createGenericObjectPool(() -> clusterClient.connect(), genericObjectPoolConfig); // Obtain a connection to perform operations. try (StatefulRedisConnection<String, String> con = pool.borrowObject()) { RedisCommands<String, String> sync = con.sync(); sync.set("key", "value"); System.out.println("Connected by pool:" + sync.get("key")); } catch (Exception e) { e.printStackTrace(); }finally { // Close the resources. pool.close(); clusterClient.shutdown();

- Example of using Lettuce to connect to a Redis Cluster DCS Redis instance with a single connection (automated topology refresh must be enabled) public class SingleConnectionToCluster {
 - public static void main(String[] args) {
 - // Enable automated topology refresh.
 - ClusterTopologyRefreshOptions topologyRefreshOptions =
 - ClusterTopologyRefreshOptions.builder()
 - // Periodic refresh: every *time* milliseconds.
 - .enablePeriodicRefresh(Duration.ofMillis(time))
 - // Triggers of adaptive refresh: MOVED redirection, ASK redirection, reconnection, unknown node (since 5.1), and slot not in any of the current shards (since 5.2).

there }	<pre>.enableAllAdaptiveRefreshTriggers() .build(); // password indicates the connection password. If there is no password, delete "password@". If is a password and it contains special characters, conversion is required. RedisClusterClient redisClient = RedisClusterClient.create("redis://password@host:port"); redisClient.setOptions(ClusterClientOptions.builder() .topologyRefreshOptions(topologyRefreshOptions) .build()); StatefulRedisClusterConnection<string, string=""> connection = redisClient.connect(); // Preferentially read data from the replicas. connection.setReadFrom(ReadFrom.REPLICA_PREFERRED); RedisAdvancedClusterCommands<string, string=""> syncCommands = connection.sync(); syncCommands.set("key", "value"); System.out.println("Connected to RedisCluster:" + syncCommands.get("key")); // Close the connection. connection.close(); // Close the client. redisClient.shutdown();</string,></string,></pre>
, Exa	mple code for connecting to Redis Cluster with connection pooling
a.	Add the following dependency in addition to the preceding Maven dependency:
	<dependency> <groupid>org.apache.commons</groupid> <artifactid>commons-pool2</artifactid> <version>2.11.1</version> </dependency>
b.	The code is as follows (automated topology refresh must be enabled): public class PoolConnectionToCluster { public static void main(String[] args) { // Enable automated topology refresh. ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder() // Periodic refresh every <i>time</i> milliseconds. .enablePeriodicRefresh(Duration.ofMillis(time)) // Triggers of adaptive refresh: MOVED redirection, ASK redirection, reconnection, unknown node (since 5.1), and slot not in any of the current shards (since 5.2). .enableAlLdaptiveRefreshTriggers() .build(); // <i>password</i> indicates the connection password. If there is no password, delete "password@". If there is a password and it contains special characters, conversion is required. RedisClusterClient redisClient = RedisClusterClient.create("redis://password@host:port"); redisClusterClient redisClient = RedisClusterConnection <string, string="">> genericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig(); // Connection pool parameters genericObjectPoolConfig.setMaxIdle(3); genericObjectPoolConfig.setMaxIdle(3); genericObjectPoolConfig.setMaxVatl(Duration.ofMillis(2000)); genericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); genericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxWait(Duration.ofMillis(5000)); GenericObjectPoolConfig.setMaxTotal(3); gener</string,>
	e.printStackTrace();

host is the IP address/domain name of the DCS instance, **port** is the port number of the DCS instance, and **password** is the password of the DCS instance. Specify these parameters as required before running the code. Connection pooling is recommended. Adjust parameters such as **timeout**, **MaxTotal** (maximum number of connections), **MinIdle** (minimum number of idle connections), **MaxIdle** (maximum number of idle connections), and **MaxWait** (maximum waiting time) based on service requirements.

----End

4.2.4.1.3 Redisson

Access a DCS Redis instance through Redisson on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

NOTE

- If a password was set during DCS Redis instance creation, configure the password for connecting to Redis using Redisson. Do not hard code the plaintext password.
- To connect to a single-node, master/standby, or Proxy Cluster instance, use the useSingleServer method of the SingleServerConfig object of Redisson. To connect to a Redis Cluster instance, use the useClusterServers method of the ClusterServersConfig object.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the Java compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

- **Step 2** Log in to the ECS.
- **Step 3** Use Maven to add the following dependency to the **pom.xml** file:

<dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.16.8</version> </dependency>

Step 4 Configure the connection pool.

Recommended keepalive configurations:

ping connection interval. Configuring this parameter will increase Redis load. Set a value based on the number of connections. The more the connections, the larger the value. Minimum value: 1000. If the number of active Redis connections exceeds 5000, do not set this parameter. pingConnectionInterval: 3000

The following is a configuration example for a single-node instance. (Set the timeout interval and connection pool size based on the site requirements. The following settings are examples only.)

redisson:
config:
singleServerConfig:
Connection timeout, in milliseconds.
connectTimeout: 10000
Command waiting timeout, in milliseconds.
timeout: 3000
Number of retry times upon a command failure.
retryAttempts: 3
Interval for retrying sending commands, in milliseconds.
retryInterval: 1500
Minimum number of idle connections.
connectionMinimumIdleSize: 30
Connection pool size.
connectionPoolSize: 50
Redis database ID.
database: 0
DNS monitoring interval, in milliseconds.
dnsMonitoringInterval: 5000
ping connection interval.
pingConnectionInterval: 3000

The following is a configuration example for a cluster instance. (Set the timeout interval and connection pool size based on the site requirements.)

redisso	on:
con	fig:
c	lusterServersConfig:
	# Idle connection timeout, in milliseconds.
	idleConnectionTimeout: 100000
	# Connection timeout, in milliseconds.
	connectTimeout: 10000
	# Command waiting timeout, in milliseconds.
	timeout: 3000
	# Number of retry times upon a command failure.
	retryAttempts: 3
	# Interval for retrying sending commands, in milliseconds.
	retryInterval: 1500
	# Interval for reconnecting a replica node upon a failure.
	failedSlaveReconnectionInterval: 3000
	# Interval for checking a replica node upon a failure.
	failedSlaveCheckInterval: 60000
	# Maximum number of subscriptions per connection.
	subscriptionsPerConnection: 5
	# Client name.
	clientName: null
	# Minimum number of idle pub/sub connections.
	subscriptionConnectionMinimumIdleSize: 1
	# Pub/Sub connection pool size.
	subscriptionConnectionPoolSize: 50
	# Minimum number of idle connections per replica node.
	slaveConnectionMinimumIdleSize: 24
	# Connection pool size per replica node.
	slaveConnectionPoolSize: 64
	# Minimum number of Idle connections of the master node.
	masterConnectionMinimumIdleSize: 24

Connection pool size of the master node. masterConnectionPoolSize: 64 # Master node status scan interval, in milliseconds. scanInterval: 1000 # ping connection interval. pingConnectionInterval: 3000 # Whether to keep the connection alive. keepAlive: false # The tcpNoDelay setting is enabled by default. tcpNoDelay: false

Step 5 Access the DCS instance by using Redisson (a Java client).

- Example of using Redisson to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with a single connection Config config = new Config(); SingleServerConfig singleServerConfig = config.useSingleServer(); singleServerConfig.setAddress("redis://host:port");
 // singleServerConfig.setPassword("*******"); RedissonClient redisson = Redisson.create(config); //Test concurrentMap. Data is synchronized to Redis when the put method is used. ConcurrentMap<String, Object> map = redisson.getMap("FirstMap"); map.put("wanger", "male"); map.put("zhangsan", "nan"); map.put("lisi", "female"); ConcurrentMap resultMap = redisson.getMap("FirstMap"); System.out.println("resultMap==" + resultMap.keySet()); //Test Set Set mySet = redisson.getSet("MySet"); mySet.add("wanger"); mySet.add("lisi"); Set resultSet = redisson.getSet("MySet"); System.out.println("resultSet===" + resultSet.size()); //Test Queue Queue myQueue = redisson.getQueue("FirstQueue"); myQueue.add("wanger"); myQueue.add("lili"); myQueue.add("zhangsan"); myQueue.peek(); myQueue.poll(); Queue resultQueue = redisson.getQueue("FirstQueue"); System.out.println("resultQueue===" + resultQueue); //Close the connection. redisson.shutdown();
- Example of using Redisson to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with connection pooling

```
//1. Initialization
Config config = new Config();
SingleServerConfig singleServerConfig = config.useSingleServer();
singleServerConfig.setAddress("redis://host:6379");
//Set the maximum number of connections in the connection pool of the master node to 500.
singleServerConfig.setConnectionPoolSize(500);
//The connections will be automatically closed and removed from the connection pool. The time unit
is millisecond.
singleServerConfig.setIdleConnectionTimeout(10000);
RedissonClient redisson = Redisson.create(config);
//Test concurrentMap. Data is synchronized to Redis when the put method is used.
ConcurrentMap<String, Object> map = redisson.getMap("FirstMap");
map.put("wanger", "male");
map.put("zhangsan", "nan");
map.put("lisi", "female");
ConcurrentMap resultMap = redisson.getMap("FirstMap");
System.out.println("resultMap==" + resultMap.keySet());
//Test Set
Set mySet = redisson.getSet("MySet");
mySet.add("wanger");
mySet.add("lisi");
Set resultSet = redisson.getSet("MySet");
System.out.println("resultSet===" + resultSet.size());
```

//Test Queue

```
Queue myQueue = redisson.getQueue("FirstQueue");
myQueue.add("wanger");
myQueue.add("lili");
myQueue.add("zhangsan");
myQueue.peek();
myQueue.poll();
Queue resultQueue = redisson.getQueue("FirstQueue");
System.out.println("resultQueue===" + resultQueue);
//Close the connection.
redisson.shutdown();
Example of using Redisson to connect to a Redis Cluster
Config config = new Config();
ClusterServersConfig clusterServersConfig = config.useClusterServers();
clusterServersConfig.addNodeAddress("redis://host:port");
//Set a password.
// clusterServersConfig.setPassword("*******");
RedissonClient redisson = Redisson.create(config);
ConcurrentMap<String, Object> map = redisson.getMap("FirstMap");
map.put("vanger", "male");
map.put("zhangsan", "nan");
map.put("lisi", "female");
ConcurrentMap resultMap = redisson.getMap("FirstMap");
System.out.println("resultMap==" + resultMap.keySet());
//2. Test Set
Set mySet = redisson.getSet("MySet");
mySet.add("wanger");
mySet.add("lisi");
Set resultSet = redisson.getSet("MySet");
System.out.println("resultSet===" + resultSet.size());
//3. Test Queue
Queue myQueue = redisson.getQueue("FirstQueue");
myQueue.add("wanger");
myQueue.add("lili");
myQueue.add("zhangsan");
myQueue.peek();
myQueue.poll();
Queue resultQueue = redisson.getQueue("FirstQueue");
System.out.println("resultQueue===" + resultQueue);
//Close the connection.
redisson.shutdown();
```

```
----End
```

4.2.4.2 Lettuce Integration with Spring Boot

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the Java compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Use Maven to add the following dependency to the **pom.xml** file:

- Since Spring Boot 2.0, Lettuce is used as the default client for connections.
- Spring Boot 2.6.6 and Lettuce 6.1.8 are used.

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-data-redis</artifactId> </dependency>

Step 4 Use Spring Boot integrated with Lettuce to connect to the instance.

- Example of using Spring Boot and Lettuce to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with a single connection
 - a. Add the Redis configuration to the **application.properties** configuration file.

spring.redis.host=host spring.redis.database=0 spring.redis.password=pwd spring.redis.port=port

b. Redis configuration class RedisConfiguration

@Bean

public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) { RedisTemplate<String, Object> template = new RedisTemplate<>(); template.setConnectionFactory(lettuceConnectionFactory); // Replace the default JdkSerializationRedisSerializer with Jackson2JsonRedisSerializer to serialize and deserialize the Redis value. Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper mapper = new ObjectMapper(); mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); jackson2JsonRedisSerializer.setObjectMapper(mapper); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // String serialization of keys template.setKeySerializer(stringRedisSerializer); // String serialization of hash keys template.setHashKeySerializer(stringRedisSerializer); // Jackson serialization of values template.setValueSerializer(jackson2JsonRedisSerializer); // Jackson serialization of hash values template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; Redis operation class RedisUtil * Obtain data from the cache. * @param key * @return value

public Object get(String key){

return key==null?null:redisTemplate.opsForValue().get(key);

}

c.

.

* Write data to the cache.

- * @param key
- * @param value

d.

```
* @return true (successful) false (failed)
 */
 public boolean set(String key,Object value) {
   try {
      redisTemplate.opsForValue().set(key, value);
      return true:
   } catch (Exception e) {
      e.printStackTrace();
      return false;
   }
}
Write the controller class for testing.
 @RestController
public class HelloRedis {
   @Autowired
   RedisUtil redisUtil;
   @RequestMapping("/setParams")
  @ResponseBody
   public String setParams(String name) {
        redisUtil.set("name", name);
        return "success";
     }
   @RequestMapping("/getParams")
  @ResponseBody
  public String getParams(String name) {
   System.out.println("-----" + name + "-----");
  String retName = redisUtil.get(name) + "";
  return retName;
   }
  }
```

- Example of using Spring Boot and Lettuce to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance with connection pooling
 - a. Add the following dependency in addition to the preceding Maven

```
dependency:
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
```

b. Add the Redis configuration to the **application.properties** configuration file.

```
spring.redis.host=host
spring.redis.database=0
spring.redis.password=pwd
spring.redis.port=port
# Connection timeout.
spring.redis.timeout=1000
# Maximum number of connections in the connection pool. A negative value indicates no limit.
spring.redis.lettuce.pool.max-active=50
# Minimum number of idle connections in the connection pool.
spring.redis.lettuce.pool.min-idle=5
# Maximum number of idle connections in the connection pool.
spring.redis.lettuce.pool.max-idle=50
# Maximum time for waiting for connections in the connection pool. A negative value indicates
no limit.
spring.redis.lettuce.pool.max-wait=5000
# Interval for scheduling an eviction thread.
spring.redis.pool.time-between-eviction-runs-millis=2000
Redis connection configuration class RedisConfiguration
```

@Bean public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) {

c.

lettuceConnectionFactory.setShareNativeConnection(false); RedisTemplate<String, Object> template = new RedisTemplate<>(); template.setConnectionFactory(lettuceConnectionFactory); // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to serialize and deserialize the Redis value. Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper mapper = new ObjectMapper(); mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); jackson2JsonRedisSerializer.setObjectMapper(mapper); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // String serialization of keys template.setKeySerializer(stringRedisSerializer); // String serialization of hash keys template.setHashKeySerializer(stringRedisSerializer); // Jackson serialization of values template.setValueSerializer(jackson2JsonRedisSerializer); // Jackson serialization of hash values template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; Example code for using Spring Boot and Lettuce to connect to Redis Cluster using a single connection Add the Redis configuration to the application.properties configuration а. file. spring.redis.cluster.nodes=host:port spring.redis.cluster.max-redirects=3 spring.redis.password= pwd # Automated refresh interval spring.redis.lettuce.cluster.refresh.period=60 # Enable automated refresh spring.redis.lettuce.cluster.refresh.adaptive=true spring.redis.timeout=60 Redis configuration class RedisConfiguration (automated topology refresh b. must be enabled). @Bean public LettuceConnectionFactory lettuceConnectionFactory() { String[] nodes = clusterNodes.split(","); List<RedisNode> listNodes = new ArrayList(); for (String node : nodes) { String[] ipAndPort = node.split(":"); RedisNode redisNode = new RedisNode(ipAndPort[0], Integer.parseInt(ipAndPort[1])); listNodes.add(redisNode); RedisClusterConfiguration redisClusterConfiguration = new RedisClusterConfiguration(); redisClusterConfiguration.setClusterNodes(listNodes); redisClusterConfiguration.setPassword(password); redisClusterConfiguration.setMaxRedirects(maxRedirects); // Configure automated topology refresh. ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder() .enablePeriodicRefresh(Duration.ofSeconds(period)) // Refresh the topology periodically. .enableAllAdaptiveRefreshTriggers() // Refresh the topology based on events. .build();

ClusterClientOptions clusterClientOptions = ClusterClientOptions.builder() // Redis command execution timeout. Only when the command execution times out will a reconnection be triggered using the new topology.

.timeoutOptions(TimeoutOptions.enabled(Duration.ofSeconds(period))) .topologyRefreshOptions(topologyRefreshOptions)

.build();

LettuceClientConfiguration clientConfig = LettucePoolingClientConfiguration.builder() .commandTimeout(Duration.ofSeconds(timeout))

.readFrom(ReadFrom.REPLICA_PREFERRED) // Preferentially read data from the replicas.

.clientOptions(clusterClientOptions) .build(); LettuceConnectionFactory factory = new LettuceConnectionFactory(redisClusterConfiguration, clientConfig); return factory;
<pre>@Bean public RedisTemplate<string, object=""> redisTemplate(LettuceConnectionFactory ettuceConnectionFactory) { RedisTemplate<string, object=""> template = new RedisTemplate<>(); template.setConnectionFactory(lettuceConnectionFactory); // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to serialize and deserialize the Redis value. Jackson2JsonRedisSerializer<object> jackson2JsonRedisSerializer = new lackson2JsonRedisSerializer<object> jackson2JsonRedisSerializer = new lackson2JsonRedisSerializer<object.class); ObjectMapper mapper = new ObjectMapper(); mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,</object.class); </object></object></string,></string,></pre>

}

• Example code for using Spring Boot and Lettuce to connect to Redis Cluster with connection pooling

a. Add the Redis configuration to the **application.properties** configuration file.

	file.
	spring.redis.cluster.nodes=host:port spring.redis.cluster.max-redirects=3
	spring.redis.password=pwd
	spring.redis.lettuce.cluster.refresh.period=60
	spring.redis.lettuce.cluster.refresh.adaptive=true
	# Connection timeout.
	spring.redis.timeout=60s
	# Maximum number of connections in the connection pool. A negative value indicates no limit. spring.redis.lettuce.pool.max-active=50
	# Minimum number of idle connections in the connection pool.
	spring.redis.lettuce.pool.min-idle=5
	# Maximum number of idle connections in the connection pool.
	spring.redis.lettuce.pool.max-idle=50
	# Maximum time for waiting for connections in the connection pool. A negative value indicates no limit.
	spring.redis.lettuce.pool.max-wait=5000
	# Interval for scheduling an eviction thread.
	spring.redis.lettuce.pool.time-between-eviction-runs=2000
b.	Redis configuration class RedisConfiguration (automated topology refresh must be enabled)
	@Bean
	<pre>public LettuceConnectionFactory lettuceConnectionFactory() { GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig(); genericObjectPoolConfig.setMaxIdle(maxIdle);</pre>
	genericObjectPoolConfig.setMinIdle(minIdle);
	genericObjectPoolConfig.setMaxIotal(maxActive);
	genericobjectPoolconfig.setMaxWalt(Duration.ofMillis(maxWalt));

genericObjectPoolConfig.setTimeBetweenEvictionRuns(Duration.ofMillis(timeBetweenEvictionRunsMillis));

String[] nodes = clusterNodes.split(","); List<RedisNode> listNodes = new ArrayList(); for (String node : nodes) { String[] ipAndPort = node.split(":"); RedisNode redisNode = new RedisNode(ipAndPort[0], Integer.parseInt(ipAndPort[1])); listNodes.add(redisNode); RedisClusterConfiguration redisClusterConfiguration = new RedisClusterConfiguration(); redisClusterConfiguration.setClusterNodes(listNodes); redisClusterConfiguration.setPassword(password); redisClusterConfiguration.setMaxRedirects(maxRedirects); // Configure automated topology refresh. ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder() .enablePeriodicRefresh(Duration.ofSeconds(period)) // Refresh the topology periodically. .enableAllAdaptiveRefreshTriggers() // Refresh the topology based on events. .build(): ClusterClientOptions clusterClientOptions = ClusterClientOptions.builder() // Redis command execution timeout. Only when the command execution times out will a reconnection be triggered using the new topology. .timeoutOptions(TimeoutOptions.enabled(Duration.ofSeconds(period))) .topologyRefreshOptions(topologyRefreshOptions) .build(); LettuceClientConfiguration clientConfig = LettucePoolingClientConfiguration.builder() .commandTimeout(Duration.ofSeconds(timeout)) .poolConfig(genericObjectPoolConfig) .readFrom(ReadFrom.REPLICA_PREFERRED) // Preferentially read data from the replicas. .clientOptions(clusterClientOptions) .build(): LettuceConnectionFactory factory = new LettuceConnectionFactory(redisClusterConfiguration, clientConfig); return factory; } @Bean public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) { lettuceConnectionFactory.setShareNativeConnection(false); RedisTemplate<String, Object> template = new RedisTemplate<>(); template.setConnectionFactory(lettuceConnectionFactory); // Use Jackson2JsonRedisSerializer to replace the default JdkSerializationRedisSerializer to serialize and deserialize the Redis value. Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper mapper = new ObjectMapper(); mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); jackson2JsonRedisSerializer.setObjectMapper(mapper); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // String serialization of keys template.setKeySerializer(stringRedisSerializer); // String serialization of hash keys template.setHashKeySerializer(stringRedisSerializer); // Jackson serialization of values template.setValueSerializer(jackson2JsonRedisSerializer); // Jackson serialization of hash values template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template;

}

host is the IP address/domain name of the DCS instance, **port** is the port number of the DCS instance, and **pwd** is the password of the DCS instance. Specify these parameters as required before running the code. Connection pooling is recommended. Adjust parameters such as **TimeOut**, **MaxTotal** (maximum number of connections), **MinIdle** (minimum number of idle connections), **MaxIdle** (maximum number of idle connections), and **MaxWait** (maximum waiting time) based on service requirements.

----End

4.2.4.3 Clients in Python

Access a DCS Redis instance through redis-py on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

NOTE

Use redis-py to connect to single-node, master/standby, and Proxy Cluster instances and redis-py-cluster to connect to Redis Cluster instances.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the Python compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance using a Python client.

Step 3 Access the DCS Redis instance.

If the system does not provide Python, run the following **yum** command to install it:

yum install python

NOTE

The Python version must be 3.6 or later. If the default Python version is earlier than 3.6, perform the following operations to change it:

- 1. Run the **rm -rf python** command to delete the Python symbolic link.
- 2. Run the **In -s python** *X.X.X* **python** command to create another Python link. In the command, *X.X.X* indicates the Python version number.
- If the instance is a single-node, master/standby, or Proxy Cluster instance:
 - a. Install Python and redis-py.
 - i. If the system does not provide Python, run the **yum** command to install it.

Run the following command to download and decompress the redisii. py package:

wget https://github.com/andymccurdy/redis-py/archive/ master.zip

unzip master.zip

iii. Go to the directory where the decompressed redis-py package is saved, and install redis-py.

python setup.py install

After the installation, run the python command. redis-py have been successfully installed if the following command output is displayed:

Figure 4-11 Running the python command

```
Iroot@ecs-____ICCCCC redis-py-masterl# python
Python 3.6.8 (default, Nov 16 2020, 16:55:22)
IGCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import redis
```

- b. Use the redis-py client to connect to the instance. In the following steps, commands are executed in CLI mode. (Alternatively, write the commands into a Python script and then execute the script.)
 - Run the **python** command to enter the CLI mode. You have entered i. CLI mode if the following command output is displayed:

Figure 4-12 Entering the CLI mode

Run the following command to access the chosen DCS Redis ii. instance:

r = redis.StrictRedis(host='XXX.XXX.XXX.XXX', port=6379, password='*****');

XXX.XXX.XXX.XXX indicates the IP address/domain name of the DCS instance and 6379 is an example port number of the instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. ****** indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed. Enter commands to perform read and write operations on the database.

>>> r = redis.StrictRedis(host='9', port=6379, password=' '''''''''''''''''''''''''''''''''''	
>>> r.set("foo", "bar")	
True	
<pre>>>> print(r.get("foo"))</pre>	
b'bar'	
>>>	

If the instance is a Redis Cluster instance:

- a. Install the redis-py-cluster client.
 - i. Download the released version.

wget https://github.com/Grokzen/redis-py-cluster/releases/ download/2.1.3/redis-py-cluster-2.1.3.tar.gz

ii. Decompress the package.

tar -xvf redis-py-cluster-2.1.3.tar.gz

iii. Go to the directory where the decompressed redis-py-cluster package is saved, and install redis-py-cluster.

python setup.py install

b. Access the DCS Redis instance by using redis-py-cluster.

In the following steps, commands are executed in CLI mode. (Alternatively, write the commands into a Python script and then execute the script.)

- i. Run the **python** command to enter the CLI mode.
- Run the following command to access the chosen DCS Redis instance. If the instance does not have a password, exclude password='******' from the command.
 >>> from rediscluster import RedisCluster

```
>>> startup_nodes = [{"host": "192.168.0.143", "port": "6379"},{"host": "192.168.0.144",
"port": "6379"},{"host": "192.168.0.145", "port": "6379"},{"host": "192.168.0.146", "port":
"6379"}]
```

```
>>> rc = RedisCluster(startup_nodes=startup_nodes, decode_responses=True, password='*****')
```

```
>>> rc.set("foo", "bar")
True
>>> print(rc.get("foo"))
'bar'
```

----End

4.2.4.4 go-redis

Access a DCS Redis instance through go-redis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

A Windows ECS is used as an example.

- Step 3 Install Visual Studio Community 2017 on the ECS.
- **Step 4** Start Visual Studio and create a project. The project name can be customized. In this example, the project name is set to **redisdemo**.
- **Step 5** Import the dependency package of go-redis and enter **go get github.com/goredis/redis** on the terminal.

Step 6 Write the following code:

```
package main
import (
   "fmt'
   "github.com/go-redis/redis"
func main() {
  // Single-node
   rdb := redis.NewClient(&redis.Options{
     Addr: "host:port",
Password: "*******", // no password set
     DB: 0, // use default DB
  })
  val, err := rdb.Get("key").Result()
  if err != nil {
     if err == redis.Nil {
        fmt.Println("key does not exists")
        return
     }
     panic(err)
  3
  fmt.Println(val)
  //Cluster
  rdbCluster := redis.NewClusterClient(&redis.ClusterOptions{
     Addrs: []string{"host:port"},
     Password: "*******",
  })
  val1, err1 := rdbCluster.Get("key").Result()
  if err1 != nil {
     if err == redis.Nil {
        fmt.Println("key does not exists")
        return
     }
     panic(err)
  }
   fmt.Println(val1)
}
```

host:port are the IP address/domain name and port number of the DCS Redis instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. ********* indicates the password used to log in to the DCS Redis instance. This password is defined during DCS Redis instance creation.

Step 7 Run the **go build -o test main.go** command to package the code into an executable file, for example, **test**.

To run the package in the Linux OS, set the following parameters before packaging:

set GOARCH=amd64

set GOOS=linux

Step 8 Run the ./test command to access the DCS instance.

----End

4.2.4.5 hiredis in C++

Access a DCS Redis instance through hiredis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

NOTE

The operations described in this section apply only to single-node, master/standby, and Proxy Cluster instances. To use C++ to connect to a Redis Cluster instance, see the C++ Redis client description.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the GCC compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance in C++.

Step 3 Install GCC, Make, and hiredis.

If the system does not provide a compiling environment, run the following **yum** command to install the environment:

yum install gcc make

Step 4 Run the following command to download and decompress the hiredis package:

wget https://github.com/redis/hiredis/archive/master.zip

unzip master.zip

Step 5 Go to the directory where the decompressed hiredis package is saved, and compile and install hiredis.

make

make install

Step 6 Access the DCS instance by using hiredis.

The following describes connection and password authentication of hiredis. For more information on how to use hiredis, visit the Redis official website.

1. Edit the sample code for connecting to a DCS instance, and then save the code and exit.

vim connRedis.c

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hiredis.h>
int main(int argc, char **argv) {
   unsigned int j;
   redisContext *conn;
   redisReply *reply;
   if (argc < 3) {
        printf("Usage: example {instance_ip_address} 6379 {password}\n");
         exit(0);
   }
   const char *hostname = argv[1];
   const int port = atoi(arqv[2]);
   const char *password = argv[3];
   struct timeval timeout = { 1, 500000 }; // 1.5 seconds
   conn = redisConnectWithTimeout(hostname, port, timeout);
   if (conn == NULL || conn->err) {
     if (conn) {
         printf("Connection error: %s\n", conn->errstr);
        redisFree(conn);
     } else {
        printf("Connection error: can't allocate redis context\n");
     }
   exit(1);
   }
   /* AUTH */
   reply = redisCommand(conn, "AUTH %s", password);
   printf("AUTH: %s\n", reply->str);
   freeReplyObject(reply);
   /* Set */
   reply = redisCommand(conn,"SET %s %s", "welcome", "Hello, DCS for Redis!");
   printf("SET: %s\n", reply->str);
   freeReplyObject(reply);
   /* Get */
   reply = redisCommand(conn,"GET welcome");
   printf("GET welcome: %s\n", reply->str);
   freeReplyObject(reply);
   /* Disconnects and frees the context */
   redisFree(conn);
   return 0;
}
```

2. Run the following command to compile the code:

gcc connRedis.c -o connRedis -I /usr/local/include/hiredis -lhiredis

If an error is reported, locate the directory where the **hiredis.h** file is saved and modify the compilation command.

After the compilation, an executable connRedis file is obtained.

3. Run the following command to access the chosen DCS Redis instance:

./connRedis {redis_ip_address} 6379 {password}

{redis_instance_address} indicates the IP address/domain name of DCS instance and **6379** is an example port number of DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *{password}* indicates the password used to log in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

You have successfully accessed the instance if the following command output is displayed:

AUTH: OK SET: OK GET welcome: Hello, DCS for Redis!

NOTICE

If an error is reported, indicating that the hiredis library files cannot be found, run the following commands to copy related files to the system directories and add dynamic links:

mkdir /usr/lib/hiredis

cp /usr/local/lib/libhiredis.so.0.13 /usr/lib/hiredis/

mkdir /usr/include/hiredis

cp /usr/local/include/hiredis/hiredis.h /usr/include/hiredis/

echo '/usr/local/lib' >>;>>;/etc/ld.so.conf

ldconfig

Replace the locations of the **so** and **.h** files with actual ones before running the commands.

----End

4.2.4.6 C#

Access a DCS Redis instance through C# Client StackExchange.Redis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the GCC compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

A Windows ECS is used as an example.

- **Step 3** Install Visual Studio Community 2017 on the ECS.
- **Step 4** Start Visual Studio 2017 and create a project.

Set the project name to redisdemo.

Step 5 Install StackExchange.Redis by using the NuGet package manager of Visual Studio.

Access the NuGet package manager console according to **Figure 4-14**, and enter **Install-Package StackExchange.Redis** - *Version 2.2.79*. (The version number is optional).

Figure 4-14 Accessing the NuGet package manager console

- Microsoft Visual Studio (Adn	ninis	trator)			
Project Build Debug Team	Тос	ols Test Analyze Wind	dow Help		
🔄 💾 🚰 🦻 - 🤆 - 🛛 Debug 🕞		Get Tools and Features			열 📕 위 개 개 🖕
x	¢	Extensions and Updates			
		Connect to Database			🗸 🗣 redisConn
<pre>lusing System; using StackExchange.Redis;</pre>		Connect to Server			
		Web Code Analysis		Þ	
]namespace redisdemo		Code Snippets Manager	Ctrl+H	<, Ctrl+B	
{] class Program		Choose Toolbox Items			
{		NuGet Package Manager		•	Package Manager Console
private static Configura		Create GUID			Manage NuGet Packages for Solution
<pre>//the lock for singleton private static readonly //singleton</pre>		Error Lookup			Package Manager Settings
		External Tools			
private static Connectio		Import and Export Settings	·		
public static Connection		Customize			
{ if (redisConn == nul)	Ф	Options			

Step 6 Write the following code, and use the String Set and Get methods to test the connection.

```
using System;
using StackExchange.Redis;
namespace redisdemo
{
  class Program
  {
     // redis config
     private static ConfigurationOptions connDCS =
ConfigurationOptions.Parse(" 10.10.38.233:6379, password= *******, connectTimeout=2000");
     //the lock for singleton
     private static readonly object Locker = new object();
     //singleton
     private static ConnectionMultiplexer redisConn;
     //singleton
     public static ConnectionMultiplexer getRedisConn()
        if (redisConn == null)
        ł
```

```
lock (Locker)
        {
           if (redisConn == null || !redisConn.IsConnected)
           {
              redisConn = ConnectionMultiplexer.Connect(connDCS);
           }
        }
     }
     return redisConn;
  }
  static void Main(string[] args)
  ł
     redisConn = getRedisConn();
     var db = redisConn.GetDatabase();
     //set get
     string strKey = "Hello";
     string strValue = "DCS for Redis!";
     Console.WriteLine( strKey + ", " + db.StringGet(strKey));
     Console.ReadLine();
  }
}
```

10.10.38.233:6379 contains an example IP address/domain name and port number of the DCS Redis instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. ********** indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

Step 7 Run the code. You have successfully accessed the instance if the following command output is displayed: Hello, DCS for Redis!

For more information about other commands of StackExchange.Redis, visit **StackExchange.Redis**.

----End

}

4.2.4.7 PHP

4.2.4.7.1 phpredis

Access a DCS Redis instance through phpredis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

NOTE

The operations described in this section apply only to single-node, master/standby, and Proxy Cluster instances. To use phpredis to connect to a Redis Cluster instance, see the **phpredis description**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the GCC compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

The following uses CentOS as an example to describe how to access an instance through phpredis.

Step 3 Install GCC-C++ and Make compilation components.

yum install gcc-c++ make

Step 4 Install the PHP development package and CLI tool.

Run the following **yum** command to install the PHP development package:

yum install php-devel php-common php-cli

After the installation is complete, run the following command to query the PHP version and check whether the installation is successful:

php --version

- **Step 5** Install the phpredis client.
 - 1. Download the source phpredis package.

wget http://pecl.php.net/get/redis-5.3.7.tgz

This version is used as an example. To download phpredis clients of other versions, visit the Redis or PHP official website.

2. Decompress the source phpredis package.

tar -zxvf redis-5.3.7.tgz

cd redis-5.3.7

3. Command before compilation.

phpize

4. Configure the **php-config** file.

./configure --with-php-config=/usr/bin/php-config

The location of the file varies depending on the OS and PHP installation mode. You are advised to locate the directory where the file is saved before the configuration.

find / -name php-config

5. Compile and install the phpredis client.

make && make install

6. After the installation, add the **extension** configuration in the **php.ini** file to reference the Redis module.

vim /etc/php.ini

Add the following configuration:

extension = "/usr/lib64/php/modules/redis.so"

D NOTE

The **redis.so** file may be saved in a different directory from **php.ini**. Run the following command to locate the directory:

find / -name php.ini

7. Save the configuration and exit. Then, run the following command to check whether the extension takes effect:

php -m |grep redis

If the command output contains **redis**, the phpredis client environment has been set up.

Step 6 Access the DCS instance by using phpredis.

```
1. Edit a redis.php file. <?php</pre>
```

```
$redis_host = "{redis_instance_address}";
$redis_port = 6379,
$user_pwd = "{password}";
$redis = new Redis();
if ($redis->connect($redis_host, $redis_port) == false) {
    die($redis->getLastError());
}
if ($redis->auth($user_pwd) == false) {
    die($redis->getLastError());
}
if ($redis->set("welcome", "Hello, DCS for Redis!") == false) {
    die($redis->getLastError());
}
svalue = $redis->get("welcome");
echo $value;
$redis->close();
?>
```

{redis_instance_address} indicates the IP address/domain name of DCS instance and **6379** is an example port number of DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *{password}* indicates the password used to log in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation. If password-free access is enabled, shield the **if** statement for password authentication.

2. Run the **php redis.php** command to access the DCS instance.

----End

4.2.4.7.2 Predis

Access a DCS Redis instance through Predis on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the PHP compilation environment has been installed on the ECS.

Procedure

Step 1 View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

- **Step 2** Log in to the ECS.
- **Step 3** Install the PHP development package and CLI tool. Run the following **yum** command:

yum install php-devel php-common php-cli

Step 4 After the installation is complete, check the version number to ensure that the installation is successful.

php --version

- Step 5 Download the Predis package to the /usr/share/php directory.
 - 1. Run the following command to download the Predis source file:

```
wget https://github.com/predis/predis/archive/refs/tags/v1.1.10.tar.gz
```

NOTE

This version is used as an example. To download Predis clients of other versions, visit the Redis or PHP official website.

2. Run the following commands to decompress the source Predis package:

tar -zxvf predis-1.1.10.tar.gz

3. Rename the decompressed Predis directory **predis** and move it to **/usr/share/ php/**.

mv predis-1.1.10 predis

- **Step 6** Edit a file used to connect to Redis.
 - Example of using **redis.php** to connect to a single-node, master/standby, or Proxy Cluster DCS Redis instance:

```
<?php
require 'predis/autoload.php';
Predis\Autoloader::register();
$client = new Predis\Client([
 'scheme' => 'tcp',
 'host' => '{redis_instance_address}],
 'port' => {port},
 'password' => '{password}]
]);
$client->set('foo', 'bar');
$value = $client->get('foo');
echo $value;
```

?>

Example code for using redis-cluster.php to connect to Redis Cluster:

```
require 'predis/autoload.php';
    $servers = array(
    'tcp://{redis_instance_address}:{port}'
);
    $options = array('cluster' => 'redis');
    $client = new Predis\Client($servers, $options);
    $client->set('foo', 'bar');
    $value = $client->get('foo');
```

echo \$value; ?>

{redis_instance_address} indicates the actual IP address/domain name of the DCS instance and *{port}* is the actual port number of DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. *{password}* indicates the password used to log in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation. If password-free access is required, delete the line that contains "password".

Step 7 Run the **php redis.php** command to access the DCS instance.

----End

4.2.4.8 Node.js

Access a DCS Redis instance through Node.js on an ECS in the same VPC. For more information about how to use other Redis clients, visit **the Redis official website**.

NOTE

The operations described in this section apply only to single-node, master/standby, and Proxy Cluster instances. To use Node.js to connect to a Redis Cluster instance, see **Node.js Redis client description**.

Prerequisites

- A DCS Redis instance has been created and is in the **Running** state.
- An ECS has been created. For details about how to create an ECS, see the *Elastic Cloud Server User Guide*.
- If the ECS runs the Linux OS, ensure that the GCC compilation environment has been installed on the ECS.

Procedure

- For client servers running Ubuntu (Debian series):
- **Step 1** View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

- Step 2 Log in to the ECS.
- Step 3 Install Node.js.

apt install nodejs-legacy

If the preceding command does not work, run the following commands:

wget https://nodejs.org/dist/v0.12.4/node-v0.12.4.tar.gz --no-check-certificate

tar -xvf node-v4.28.5.tar.gz

cd node-v4.28.5

./configure

make

make install

After the installation is complete, run the **node** --version command to query the Node.js version to check whether the installation is successful.

Step 4 Install the node package manager (npm).

apt install npm

Step 5 Install the Redis client ioredis.

npm install ioredis

Step 6 Edit the sample script for connecting to a DCS instance.

Add the following content to the **ioredisdemo.js** script, including information about connection and data reading.

```
var Redis = require('ioredis');
var redis = new Redis({
                    // Redis port
 port: 6379,
 host: '192.168.0.196', // Redis host
 ramity: 4, // 4 (IPv4) or 6 (IPv6) password: '******'
 db: 0
});
redis.set('foo', 'bar');
redis.get('foo', function (err, result) {
 console.log(result);
}):
// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
 console.log(result);
}):
// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);
// All arguments are passed directly to the redis server:
redis.set('key', 100, 'EX', 10);
```

host indicates the example IP address/domain name of the DCS instance and *port* indicates the port number of the DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. ******** indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

Step 7 Run the sample script to access the chosen DCS instance.

node ioredisdemo.js

----End

- For client servers running CentOS (Red Hat series):
- **Step 1** View the IP address/domain name and port number of the DCS Redis instance to be accessed.

For details, see Viewing Details of a DCS Instance.

Step 2 Log in to the ECS.

Step 3 Install Node.js.

yum install nodejs

If the preceding command does not work, run the following commands:

wget https://nodejs.org/dist/v0.12.4/node-v0.12.4.tar.gz --no-check-certificate

tar -xvf node-v0.12.4.tar.gz

cd node-v0.12.4

./configure

make

make install

NOTE

After the installation is complete, run the **node --version** command to query the Node.js version to check whether the installation is successful.

Step 4 Install npm.

yum install npm

Step 5 Install the Redis client ioredis.

npm install ioredis

Step 6 Edit the sample script for connecting to a DCS instance.

Add the following content to the **ioredisdemo.js** script, including information about connection and data reading.

```
var Redis = require('ioredis');
var redis = new Redis({
                   // Redis port
 port: 6379,
 host: '192.168.0.196', // Redis host
             // 4 (IPv4) or 6 (IPv6)
 family: 4,
 password: '*****'
 db: 0
}):
redis.set('foo', 'bar');
redis.get('foo', function (err, result) {
 console.log(result);
});
// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
 console.log(result);
});
// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);
// All arguments are passed directly to the redis server:
redis.set('key', 100, 'EX', 10);
```

host indicates the example IP address/domain name of the DCS instance and *port* indicates the port number of the DCS instance. For details about how to obtain the IP address/domain name and port, see **Step 1**. Change them as required. ******** indicates the password used for logging in to the chosen DCS Redis instance. This password is defined during DCS Redis instance creation.

Step 7 Run the sample script to access the chosen DCS instance.
node ioredisdemo.js

----End

4.2.5 Accessing a DCS Redis 4.0/5.0/6.0 Instance on the Console

Access a DCS Redis instance through Web CLI. This function is supported only by DCS Redis 4.0 and later instances, and not by DCS Redis 3.0 instances.

NOTE

- Do not enter sensitive information in Web CLI to avoid disclosure.
- Keys and values cannot contain spaces.
- If the value is empty, **nil** is returned after the **GET** command is executed.

Prerequisites

The instance is in the **Running** state.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.
- **Step 4** In the row containing the desired instance, choose **More** > **Connect to Redis** to go to the Web CLI login page.

Figure 4-15 Connecting to Redis

Name J⊒	Status ↓Ξ	Cache Engine ↓Ξ	Туре	CPU	Specification (G $\downarrow \equiv$	Used/Available _ $\downarrow \equiv$	Connection Address	Tags	Billing Mode 🕜	Operation
dcs-jr0a 6a25ff88-5080-4ea2	Running	Redis 5.0	Master/Standby	x86	0.125	2/128 (Pay-per-use	View Metric Restart More 🔺
dcs-r84c 1006c93c-229b-415c	Running	Redis 5.0	Single-node	x86	0.125	1/128 (Pay-per-use	Connect to Redis
dcs-dcstest ddc5344f-fdd1-4345	🕤 Running	Redis 3.0	Single-node	x86	2	3/1,536			Pay-per-use	Master/Standby Switchover
										Command Renaming Delete

- **Step 5** Enter the password of the DCS instance. On Web CLI, select the current Redis database, enter a Redis command in the command box, and press **Enter**.
 - **NOTE**

If no operation is performed for more than 5 minutes, the connection times out. You must enter the access password to connect to the instance again.

```
----End
```

4.3 Viewing Details of a DCS Instance

On the DCS console, you can view DCS instance details.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Search for DCS instances using any of the following methods:
 - Search by keyword.

If you do not select an attribute and enter a keyword in the search box, the system searches for instances by instance name by default.

• Select attributes and enter their keywords to search.

Click the search box, select an instance attribute, and enter a keyword to search. You can select multiple attributes at a time.

For example, choose **Status** > **Running**, **Type** > **Master/Standby**, and **Cache Engine** > **Redis 5.0**.

For more information on how to search, click the question mark to the right of the search box.

Step 5 On the DCS instance list, click the name of a DCS instance to display more details about it. The following table describes the parameters.

Section	Parameter	Description
Instance Details	Name	Name of the DCS instance. To modify the instance name, click 🧖.
	Status	State of the chosen instance.
	ID	ID of the chosen instance.
	Cache Engine	Cache engine and cache engine version used by the DCS instance. For example, Redis 5.0.
	Instance Type	Type of the selected instance. Currently, supported types include single-node, master/standby, Proxy Cluster, and Redis Cluster.
	Cache Size	Specification of the chosen instance.
	Used/ Available Memory (MB)	 The used memory space and maximum available memory space of the chosen instance. The used memory space includes: Size of data stored on the DCS instance Size of Redis-server buffers (including client buffer and repl-backlog) and internal data structures
	CPU	CPU of the DCS instance.

Table 4-2 Parameters on the Basic Information page of a DCS instance

Section	Parameter	Description		
	Enterprise Project	Enterprise project to which the instance belongs. Click do modify the enterprise project of the instance.		
	Description	Description of the DCS instance. To modify the description, click .		
Connectio n	Password Protected	Currently, password-protected access and password-free access are supported.		
	Connection Address	 Domain name and port number of the instance. You can click next to Connection Address to change the port. NOTE The instance has a domain name address if it was created after DCS has been interconnected with DNS. Instances created before the interconnection only have IP addresses and cannot be changed to domain name access. For a master/standby DCS Redis 4.0/5.0/6.0 instance, Connection Address indicates the domain name and port number of the master node, and Read-only Address indicates the domain name and port number of the standby node. When connecting to such an instance, you can use the domain name and port number of the master node or the standby node. For details, see Architecture of Master/Standby DCS Redis 4.0/5.0/6.0 Instances . You can change the port only for a DCS Redis 4.0/5.0/6.0 instance, but not for a DCS Redis 3.0 instance. 		
	IP Address	IP address and port number of the chosen instance.		
Network	AZ	Availability zone in which the cache node running the selected DCS instance resides.		
	VPC	VPC in which the chosen instance resides.		
	Subnet	Subnet in which the chosen instance resides.		
	Security Group	Security group that controls access to the chosen instance. Only Redis 3.0 supports access control with security groups. To modify the security group, click . DCS Redis 4.0 and later are based on VPC Endpoint and do not support security groups. You can click configure the whitelist to configure the whitelist.		
Billing	Billing Mode	Pay-per-use		

Section	Parameter	Description
	Created	Time at which the chosen instance started to be created.
	Run	Time at which the instance was created.
Instance Topology	-	Hover the mouse pointer over an instance to view its metrics, or click the icon of an instance to view its historical metrics.
		Topologies are supported only for master/standby and cluster instances.

5 Operating DCS Instances

5.1 Modifying DCS Instance Specifications

On the DCS console, you can scale a DCS Redis instance to a larger or smaller capacity.

NOTE

- **Modify instance specifications during off-peak hours.** If the modification failed in peak hours (for example, when memory or CPU usage is over 90% or write traffic surges), try again during off-peak hours.
- You can only change the instance type of single-node or master/standby DCS Redis 3.0 instances.
- If your DCS instances are too old to support scaling, contact technical support to upgrade the instances.
- Services may be interrupted for seconds during the modification. Therefore, services connected to Redis must support reconnection.
- Modifying instance specifications does not affect the connection address, password, data, security group, and whitelist configurations of the instance.

Change of the Instance Type

 Table 5-1 Instance type change options supported by different DCS instances

Version	Supported Type Change	Precautions
Redis 3.0	From single- node to master/ standby	The instance cannot be connected for several seconds and remains read-only for about one minute.

Version	Supported Type Change	Precautions
	From master/ standby to Proxy Cluster	 If the data of a master/standby DCS Redis 3.0 instance is stored in multiple databases, or in non-DB0 databases, the instance cannot be changed to the Proxy Cluster type. A master/standby instance can be changed to the Proxy Cluster type only if its data is stored only on DB0. The instance cannot be connected and remains read-only for 5 to 30 minutes.
Redis 4.0/5.0	From master/ standby to Proxy Cluster	1. Before changing the instance type to Proxy Cluster, evaluate the impact on services. For details, see What Are the Constraints on Implementing
	From Proxy Cluster to master/standby	Multi-DB on a Proxy Cluster Instance? and Command Restrictions.
		 Memory usage must be less than 70% of the maximum memory of the new flavor.
		 Some keys may be evicted if the current memory usage exceeds 90% of the total.
		4. After the change, create alarm rules again for the instance.
		5. For instances that are currently master/standby, ensure that their read-only IP address or domain name is not used by your application.
		 If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after the change.
		 Modify instance specifications during off-peak hours. An instance is temporarily interrupted and remains read-only for about 1 minute during the specification change.

Any instance type changes not listed in the preceding table are not supported. To modify specifications while changing the instance type, see **IP Switching**.

For details about the commands supported by different types of instances, see **Command Compatibility**.

Scaling

• The following table lists scaling options supported by different DCS instances.

Table 5-2 Sca	ling options	supported by	[,] different [DCS instances
---------------	--------------	--------------	--------------------------	---------------

Cache Engine	Single-Node	Master/ Standby	Redis Cluster	Proxy Cluster
Redis 3.0	Scaling up/ down	Scaling up/ down	N/A	Scaling up
Redis 4.0	Scaling up/ down	Scaling up/ down, out/in	Scaling up/ down, out/in	Scaling up/ down
Redis 5.0	Scaling up/ down	Scaling up/ down, out/in	Scaling up/ down, out/in	Scaling up/ down
Redis 6.0	Scaling up/ down	Scaling up/ down	N/A	N/A

NOTE

If the reserved memory of a DCS Redis 3.0 instance is insufficient, the scaling may fail when the memory is used up.

Change the replica quantity and capacity separately.

• Impact of scaling

Table	5-3	Impact	of	scaling
-------	-----	--------	----	---------

Instance Type	Scali ng Type	Impact
Single- node, master/ standby	Scali ng up/ dow	• During scaling up, a DCS Redis 4.0/5.0/6.0 basic instance will be disconnected for several seconds and remain read-only for about 1 minute. During scaling down, connections will not be interrupted.
	n	• A DCS Redis 3.0 instance will be disconnected for several seconds and remain read-only for 5 to 30 minutes.
		 For scaling up, only the memory of the instance is expanded. The CPU processing capability is not improved.
		• Single-node DCS instances do not support data persistence. Scaling may compromise data reliability. After scaling, check whether the data is complete and import data if required. If there is important data, use a migration tool to migrate the data to other instances for backup.
		• For master/standby instances, backup records created before scale-down cannot be used after scale-down. If necessary, download the backup file in advance or back up the data again after scale-down.

Instance Type	Scali ng Type	Impact
Proxy Scali Cluster ng and Redis up/ Cluster dow	Scali ng up/ dow	• During scaling up and scaling down that does not involve a shard quantity decrease, connections will not be interrupted, but CPU resources will be occupied, decreasing performance by up to 20%.
	n	• During scaling up and scaling down that involves a shard quantity decrease, nodes will be deleted, and connections will be interrupted. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after scaling.
		• If the shard quantity increases, new Redis Server nodes are added, and data is automatically balanced to the new nodes.
	• If the shard quantity decreases, nodes will be deleted. Before scaling down a Redis Cluster instance, ensure that the deleted nodes are not directly referenced in your application, to prevent service access exceptions.	
	• To scale down an instance, ensure that the used memory of each node is less than 70% of the maximum memory per node of the new flavor.	
	• Scaling involves data migration, which increases access latency. For a Redis Cluster instance, ensure that the client can properly process the MOVED and ASK commands. Otherwise, requests will fail.	
		• If the memory becomes full during scaling due to a large amount of data being written, scaling will fail.
	• Before scaling, check for big keys through Cache Analysis. Redis has a limit on key migration. If the instance has any single key greater than 512 MB, scaling will fail when big key migration between nodes times out. The bigger the key, the more likely the migration will fail.	
		• Before scaling up or down a Redis Cluster instance, ensure that automated cluster topology refresh is enabled if you use Lettuce. If it is disabled, you will need to restart the client after scaling. For details about how to enable automated refresh, see an example of using Lettuce to connect to a Redis Cluster instance.
		 Backup records created before scaling cannot be used. If necessary, download the backup file in advance or back up the data again after scaling.

Instance Type	Scali ng Type	Impact
Master/ standby, read/ write splitting, and Redis Cluster instances	Scali ng out/i n (repli ca quan tity chan ge)	 Before scaling out or in a Redis Cluster instance, ensure that automated cluster topology refresh is enabled if you use Lettuce. If it is disabled, you will need to restart the client after scaling. For details about how to enable automated refresh, see an example of using Lettuce to connect to a Redis Cluster instance. Deleting replicas interrupts connections. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after scaling. Adding replicas does not interrupt connections. If the number of replicas is already the minimum supported by the instance, you can no longer delete replicas.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Choose **More** > **Modify Specifications** in the row containing the DCS instance.
- **Step 5** On the **Modify Specifications** page, select the desired specification.

For a master/standby or Redis Cluster DCS Redis 4.0 and 5.0 instance, you can choose to change by specification or replica quantity.

- Step 6 Click Next. In the dialog box that is displayed, click Yes.
- **Step 7** Click **Submit** to start modifying the DCS instance.

You can go to **Background Tasks** page to view the modification status. For more information, see **Viewing Background Tasks**.

Specification modification of a single-node or master/standby DCS instance takes about 5 to 30 minutes to complete, while that of a cluster DCS instance takes a longer time. After an instance is successfully modified, it changes to the **Running** state.

D NOTE

- If the specification modification of a single-node DCS instance fails, the instance is temporarily unavailable for use. The specification remains unchanged. Some management operations (such as parameter configuration and specification modification) are temporarily not supported. After the specification modification is completed in the backend, the instance changes to the new specification and becomes available for use again.
- If the specification modification of a master/standby or cluster DCS instance fails, the instance is still available for use with its original specifications. Some management operations (such as parameter configuration, backup, restoration, and specification modification) are temporarily not supported. Remember not to read or write more data than allowed by the original specifications; otherwise, data loss may occur.
- After the specification modification is successful, the new specification of the instance takes effect.

----End

5.2 Restarting DCS Instances

On the DCS console, you can restart one or multiple DCS instances at a time.

NOTICE

- After a single-node DCS instance is restarted, data will be deleted from the instance.
- While a DCS instance is restarting, it cannot be read from or written to.
- An attempt to restart a DCS instance while it is being backed up may result in a failure.
- Restarting a DCS instance will disconnect the original client. You are advised to configure automatic reconnection in your application.

Prerequisites

The DCS instances you want to restart are in the Running or Faulty state.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** On the **Cache Manager** page, select one or more DCS instances you want to restart.
- Step 5 Click Restart above the DCS instance list.
- Step 6 In the displayed dialog box, click Yes.

It takes 10 seconds to 30 minutes to restart DCS instances. After DCS instances are restarted, their status changes to **Running**.

D NOTE

- To restart a single instance, you can also click **Restart** in the same row as the instance.
- The time required for restarting a DCS instance depends on the cache size of the instance.

----End

5.3 Deleting DCS Instances

On the DCS console, you can delete one or multiple DCS instances at a time. You can also delete all instance creation tasks that have failed to run.

NOTICE

- After a DCS instance is deleted, the instance data will also be deleted without backup. In addition, any backup data of the instance will be deleted. Therefore, download the backup files of the instance for permanent storage before deleting the instance.
- If the instance is in cluster mode, all cluster nodes will be deleted.

Prerequisites

- The DCS instances you want to delete have been created.
- The DCS instances you want to delete are in the **Running** or **Faulty** state.

Procedure

Deleting DCS Instances

Step 1 Log in to the DCS console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** On the **Cache Manager** page, select one or more DCS instances you want to delete.

DCS instances in the **Creating**, **Restarting**, **Upgrading**, **Resizing**, **Clearing data**, **Backing up**, or **Restoring** state cannot be deleted.

- Step 5 Choose More > Delete above the instance list.
- **Step 6** Enter **DELETE** as prompted and click **Yes** to delete the instance.

It takes 1 to 30 minutes to delete DCS instances.

NOTE

To delete a single instance, choose **Operation** > **More** > **Delete** in the same row as the instance.

Deleting Instance Creation Tasks That Have Failed to Run

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** If there are DCS instances that have failed to be created, **Instance Creation Failures** is displayed above the instance list.
- Step 5 Click the icon or the number of failed tasks next to Instance Creation Failures.

The Instance Creation Failures dialog box is displayed.

- Step 6 Choose failed instance creation tasks to delete.
 - To delete all failed tasks, click **Delete All** above the task list.
 - To delete a single failed task, click **Delete** in the same row as the task.

----End

5.4 Performing a Master/Standby Switchover for a DCS Instance

On the DCS console, you can manually switch the master and standby nodes of a DCS instance. This operation is used for special purposes, for example, releasing all service connections or terminating ongoing service operations.

Only master/standby instances support a master/standby node switchover.

To perform a manual switchover for a Proxy Cluster or Redis Cluster DCS Redis 4.0 or 5.0 instance, go to the **Shards and Replicas** page of the instance. For details, see **Managing Shards and Replicas**.

NOTICE

- Services may be interrupted for up to 10 seconds during the switchover. Before performing a switchover, ensure that your application supports reconnection.
- During a master/standby node switchover, a large amount of resources will be consumed for data synchronization between the master and standby nodes. You are advised to perform this operation during off-peak hours.
- Data of the maser and standby nodes is synchronized asynchronously. Therefore, a small amount of data that is being operated on during the switchover may be lost.

Prerequisites

The DCS instance for which you want to perform a master/standby node switchover is in the **Running** state.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.
- Step 4 In the Operation column of the instance, choose More > Master/Standby Switchover, then click OK.

----End

5.5 Clearing DCS Instance Data

You can clear data of DCS Redis 4.0 and later instances on the console.

Clearing instance data cannot be undone and cleared data cannot be recovered. Exercise caution when performing this operation.

Prerequisites

The instance is in the **Running** state.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Select one or more DCS instances.
- Step 5 Click Clear data above the instance list.
- Step 6 In the displayed dialog box, click Yes.

----End

5.6 Exporting DCS Instance List

On the DCS console, you can export DCS instance information in full to an Excel file.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.

Step 4 Click

above the instance list.

Figure 5-1 DCS instance list

Name	ID	Status	AZ	Cache	Engine	Instance	Specificati	Used/Available	McConnect	Created(UTC	TBilling	VPC	VPC ID	Enterpri	Domain NaDescription
dcs-jr0a	6a25ff88-	RUNNING	AZ1, AZ2	Redis	5.0	ha	. 25	2/256 (0.78)%	10.2.1.	2023-03-09T	8Pay-per-	0211_db-	7aeb5b0b	default	redis-6a2null
dcs-dcst	ddc5344f-	RUNNING	AZ1	Redis	3.0	single	2	3/2048 (0.20)	10.2.1.	2023-03-06T	3Pay-per-	0211_db-	7aeb5b0b	default	redis-dd(null
dcs-r84c	1006c93c-	RUNNING	AZ1	Redis	5.0	single	.125	1/128 (0.78)%	10.2.1.	2023-03-06T	3Pay-per-	0211_db-	a7aeb5b0b	default	redis-100null

----End

5.7 Command Renaming

After creating a DCS Redis 4.0 or later instance, you can rename the following critical commands: Currently, you can only rename the **COMMAND**, **KEYS**, **FLUSHDB**, **FLUSHALL**, **HGETALL**, **SCAN**, **HSCAN**, **SSCAN**, and **ZSCAN** commands.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- Step 4 In the Operation column of an instance, choose More > Command Renaming.
- **Step 5** Select a command, enter a new name, and click **OK**.

NOTE

- You can rename multiple commands at a time. Remember the new command names because they will not be displayed on the console for security purposes.
- The system will restart the instance after you rename commands. The new commands take effect after the restart.
- To use the original name of a command, rename the command again.
- The new name can contain 4 to 64 characters including letters, digits, underscores (_), and hyphens (-), and must start with a letter.

6 Managing DCS Instances

6.1 Configuration Notice

- In most cases, different DCS instance management operations cannot proceed concurrently. If you initiate a new management operation while the current operation is in progress, the DCS console prompts you to initiate the new operation again after the current operation is complete. DCS instance management operations include:
 - Creating a DCS instance
 - Configuring parameters
 - Restarting a DCS instance
 - Changing the instance password
 - Resetting the instance password
 - Scaling, backing up, or restoring an instance
- You can restart a DCS instance while it is being backed up, but the backup task will be forcibly interrupted and is likely to result in a backup failure.

NOTICE

In the event that a cache node of a DCS instance is faulty:

- The instance remains in the **Running** state and you can continue to read from and write to the instance. This is achieved thanks to the high availability of DCS.
- Cache nodes can recover from internal faults automatically. Manual fault recovery is also supported.
- Certain operations (such as parameter configuration, password change or resetting, backup, restoration, and specification modification) in the management zone are not supported during fault recovery. You can contact technical support or perform these operations after the cache nodes recover from faults.

6.2 Modifying Configuration Parameters

You can modify the configuration parameters of your DCS instance to optimize DCS performance based on your requirements.

For example, if you do not need data persistence, set **appendonly** to **no**.

After the instance configuration parameters are modified, the modification takes effect immediately without the need to manually restart the instance. For a cluster instance, the modification takes effect on all shards.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** On the **Cache Manager** page, click the name of the DCS instance you want to configure.
- **Step 5** Choose **Instance Configuration** > **Parameters**.
- Step 6 On the Parameters page, click Modify.
- Step 7 Modify parameters based on your requirements.

 Table 6-1 describes the parameters. In most cases, retain the default values.

Parameter	Description	Value Range	Default Value
timeout	The maximum amount of time (in seconds) a connection between a client and the DCS instance can be allowed to remain idle before the connection is terminated. A setting of 0 means that this function is disabled. Proxy Cluster instances do not have this parameter.	0-7200 seconds	0

Parameter	Description	Value Range	Default Value
appendfsync	Controls how often fsync() transfers cached data to the disk. Note that some OSs will perform a complete data transfer but some others only make a "best- effort" attempt.	noalwayseverysec	no
	There are three settings: no: fsync() is never called. The OS will flush data when it is ready. This mode offers the highest performance. always: fsync() is called after every write to the AOF. This mode is very slow, but also very safe. everysec: fsync() is called once per second. This		
	mode provides a compromise between safety and performance. Single-node instances do not have this parameter.		
appendonly	Indicates whether to log each modification of the instance. By default, data is written to disks asynchronously in Redis. If this function is disabled, recently- generated data might be lost in the event of a power failure. Options: yes: enabled no: disabled	 yes no 	yes
	Single-node instances do not have this parameter.		

Parameter	Description	Value Range	Default Value
client-output- buffer-limit- slave-soft- seconds	Number of seconds that the output buffer remains above client- output-buffer-slave- soft-limit before the client is disconnected. Single-node instances do not have this parameter.	0–60	60
client-output- buffer-slave- hard-limit	Hard limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the hard limit, the client is immediately disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
client-output- buffer-slave- soft-limit	Soft limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the soft limit and continuously remains above the limit for the time specified by the client-output-buffer- limit-slave-soft-seconds parameter, the client is disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.

Parameter	Description	Value Range	Default Value
maxmemory- policy	The deletion policy to apply when the maxmemory limit is reached. Options:	Depends on the instance version.	Depends on the instance version
	volatile-lru: Evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set. (Recommended)		and type.
	allkeys-lru : Evict keys by trying to remove the LRU keys first.		
	volatile-random : evict keys randomly, but only evict keys with an expire set.		
	allkeys-random : Evict keys randomly.		
	volatile-ttl : Evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first.		
	noeviction : Do not delete any keys and only return errors when the memory limit was reached.		
	volatile-lfu : Evict keys by trying to remove the less frequently used (LFU) keys first, but only among keys that have an expire set.		
	allkeys-lfu : Evict keys by trying to remove the LFU keys first.		
lua-time-limit	Maximum time allowed for executing a Lua script (in milliseconds).	100–5000	5,000

Parameter	Description	Value Range	Default Value
master-read- only	Sets the instance to be read-only. All write operations will fail. Proxy Cluster instances do not have this parameter.	yesno	no
maxclients	The maximum number of clients allowed to be concurrently connected to a DCS instance. Proxy Cluster instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
proto-max- bulk-len	Maximum size of a single element request (in bytes).	1,048,576–536,870,912	536,870,9 12
repl-backlog- size	The replication backlog size (bytes). The backlog is a buffer that accumulates replica data when replicas are disconnected from the master. When a replica reconnects, a partial synchronization is performed to synchronize the data that was missed while replicas were disconnected. Single-node instances do not have this parameter.	16,384–1,073,741,824	1,048,576
repl-backlog- ttl	The amount of time, in seconds, before the backlog buffer is released, starting from the last a replica was disconnected. The value 0 indicates that the backlog is never released. Single-node instances do not have this parameter.	0-604,800	3,600

Parameter	Description	Value Range	Default Value
repl-timeout	Replication timeout (in seconds). Single-node instances do not have this parameter	30-3,600	60
hash-max- ziplist-entries	Hashes are encoded using a memory efficient data structure when the number of entries in hashes is less than the value of this parameter.	1–10,000	512
hash-max- ziplist-value	Hashes are encoded using a memory efficient data structure when the biggest entry in hashes does not exceed the length threshold indicated by this parameter.	1–10,000	64
set-max- intset-entries	When a set is composed of just strings that happen to be integers in radix 10 in the range of 64 bit signed integers, sets are encoded using a memory efficient data structure.	1–10,000	512
zset-max- ziplist-entries	Sorted sets are encoded using a memory efficient data structure when the number of entries in sorted sets is less than the value of this parameter.	1–10,000	128
zset-max- ziplist-value	Sorted sets are encoded using a memory efficient data structure when the biggest entry in sorted sets does not exceed the length threshold indicated by this parameter.	1-10,000	64

Parameter	Description	Value Range	Default Value
latency- monitor- threshold	Threshold time in latency monitoring. Unit: millisecond.	0–86,400,000 ms	0
	Set to 0 : Latency monitoring is disabled.		
	Set to more than 0: All with at least this many milliseconds of latency will be logged.		
	By running the LATENCY command, you can perform operations related to latency monitoring, such as obtaining statistical data, and configuring and enabling latency monitoring.		
	Proxy Cluster instances do not have this parameter.		

Parameter	Description	Value Range	Default Value
notify- keyspace- events	Controls which keyspace events notifications are enabled for. If the value is an empty string, this function is disabled. A combination of different values can be used to enable notifications for multiple event types. Possible values:	See the parameter description.	Ex
	K : Keyspace events, published with the keyspace@ prefix.		
	E: Keyevent events, published with keyevent@ prefix		
	g : Generic commands (non-type specific) such as DEL, EXPIRE, and RENAME		
	\$: String commands		
	l: List commands		
	s: Set commands		
	h: Hash commands		
	z: Sorted set commands		
	x : Expired events (events generated every time a key expires)		
	e : Evicted events (events generated when a key is evicted for maxmemory)		
	A: an alias for "g\$lshzxe"		
	The parameter value must contain either K or E . A cannot be used together with any of the characters in "g\$lshzxe". For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis		
	will notify Pub/Sub clients about all events.		

Parameter	Description	Value Range	Default Value
	Proxy Cluster instances do not have this parameter.		
slowlog-log- slower-than	Redis records queries that exceed a specified execution time. slowlog-log-slower- than is the maximum time allowed, in microseconds, for command execution. If this threshold is exceeded, Redis will record the query.	0–1,000,000	10,000
slowlog-max- len	The maximum allowed number of slow queries that can be logged. Slow query log consumes memory, but you can reclaim this memory by running the SLOWLOG RESET command.	0-1000	128
auto-kill- timeout-lua- process	yes: enabled no: disabled When this parameter is enabled, lua scripts are killed when their execution times out. However, scripts with write operations are not killed, but their nodes automatically restart (if persistence has been enabled for the instance) without saving the write operations. Single-node instances and DCS Redis 3.0 instances do not have this parameter.	 yes no 	no

D NOTE

- 1. For more information about the parameters described in Table 6-1, visit https:// redis.io/topics/memory-optimization.
- 2. The **latency-monitor-threshold** parameter is usually used for fault location. After locating faults based on the latency information collected, change the value of **latency-monitor-threshold** to **0** to avoid unnecessary latency.
- 3. More about the notify-keyspace-events parameter:
 - The parameter setting must contain at least a K or E.
 - A is an alias for "g\$lshzxe" and cannot be used together with any of the characters in "g\$lshzxe".
 - For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis will notify Pub/Sub clients about all events.
- 4. Configurable parameters and their values vary depending on the instance type.
- **Step 8** After you have finished setting the parameters, click **Save**.
- Step 9 Click Yes to confirm the modification.

----End

Typical Scenarios of Configuring Parameters

The following describes how to change the value of the **appendonly** parameter:

- If Redis is used as the cache and services are insensitive to Redis data losses, disable instance persistence to improve performance. In this case, change the value of **appendonly** to **no**. For details, see **Procedure**.
- If Redis is used as the database or services are sensitive to Redis data losses, enable instance persistence. In this case, change the value of **appendonly** to **yes**. For details, see **Procedure**. After instance persistence is enabled, you need to consider the frequency of writing Redis cache data to disks and the impact on the Redis performance. You can use this parameter together with the **appendfsync** parameter. There are three modes of calling fsync():
 - no: fsync() is never called. The OS will flush data when it is ready. This mode offers the highest performance.
 - always: fsync() is called after every write to the AOF. This mode is very slow, but also very safe.
 - everysec: fsync() is called once per second, ensuring both data security and performance.

NOTE

Currently, the **appendonly** and **appendfsync** parameters can be modified on the console only for master/standby and Redis 4.0/5.0 Proxy Cluster and Redis Cluster instances.

6.3 Modifying the Security Group

On the DCS console, after creating a DCS instance, you can modify the security group of the DCS instance on the instance's **Basic Information** page.

You can modify the security groups of DCS Redis 3.0 instances but cannot modify those of DCS Redis 4.0/5.0/6.0 instances.

Prerequisites

At least one DCS instance has been created.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS instance for which you want to modify the security group.
- **Step 5** Click the **Basic Information** tab. In the **Network** area, click next to the **Security Group** parameter.
- **Step 6** Select a new security group from the drop-down list. Click \checkmark to save the modification or \times to discard the modification.

NOTE

Only the security groups that have been created can be selected from the drop-down list. If you need to create a security group, follow the procedure described **Security Group Configurations**.

The modification will take effect immediately, that is, the new maintenance time window will appear on the **Basic Information** tab page immediately.

----End

6.4 Viewing Background Tasks

After you initiate certain instance operations such as modifying instance specifications and changing or resetting a password, a background task will start for the operation. On the DCS console, you can view the background task status and clear task information by deleting task records.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS instance whose background task you want to manage.
- **Step 5** Click the **Background Tasks** tab.

A list of background tasks is displayed.

Step 6 Click , specify **Start Date** and **End Date**, and click **OK** to view tasks started in the corresponding time segment.

- Click to refresh the task status.
- To clear the record of a background task, click **Delete** in the **Operation** column.

NOTE

You can only delete the records of tasks in the **Successful** or **Failed** state.

----End

6.5 Viewing Data Storage Statistics of a DCS Redis 3.0 Proxy Cluster Instance

You can view the data storage statistics of all nodes of a DCS Redis 3.0 Proxy Cluster instance. If data storage is unevenly distributed across nodes, you can scale up the instance or clear data.

You can only view data storage statistics of DCS Redis 3.0 Proxy Cluster instances. Instances of other types, for example, master/standby, only have one node, and you can view the used memory on the instance details page.

NOTE

A Redis Cluster instance has multiple storage nodes. You can check the data storage statistics of a Redis Cluster instance in its Redis Server monitoring data.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.

Filter DCS instances to find the desired one.

- **Step 4** Click the name of the desired Proxy Cluster instance to go to the instance details page.
- **Step 5** Click the **Node Management** tab.

The data volume of each node in the cluster instance is displayed.

When the data storage capacity of a node in a cluster is used up, you can scale up the instance according to **Modifying DCS Instance Specifications**.

----End

6.6 Managing Tags

Tags facilitate DCS instance identification and management.

You can add tags to an instance when creating it or add, modify, or delete tags on the details page of a created instance. Each instance can have a maximum of 10 tags.

A tag consists of a tag key and a tag value. **Table 6-2** lists the tag key and value requirements.

Parameter	Requirement
Tag key	Cannot be left blank.
	 Must be unique for the same instance.
	• Cannot start or end with a space.
	 Consists of a maximum of 128 characters.
	 Can contain letters of any language, digits, spaces, and special characters : = + - @
	• Cannot start with _ sys_ .
Tag value	• Consists of a maximum of 255 characters.
	 Can contain letters of any language, digits, spaces, and special characters : / = + - @
	• Cannot start or end with a space.

Table 6-2 Tag key and value requirements

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of an instance.
- **Step 5** Choose **Instance Configuration** > **Tags**.

View the tags of the instance.

- **Step 6** Perform the following operations as required:
 - Add a tag
 - a. Click Add Tag.

If you have created predefined tags, select a predefined pair of tag key and value. To view predefined tags or create tags, click **View predefined tags**. You will be directed to the TMS console.

You can also create new tags by entering **Tag key** and **Tag value**.

- b. Click OK.
- Modify a tag

In the row containing the tag to be modified, click **Edit** in the **Operation** column. Enter the new tag value and click **OK**.

Delete a tag

In the row containing the tag to be deleted, click **Delete** in the **Operation** column. Then click **Yes**.

----End

6.7 Managing Shards and Replicas

This section describes how to query the shards and replicas of a DCS Redis 4.0/5.0/6.0 instance and how to manually promote a replica to master.

Currently, this function is supported only by master/standby and cluster DCS Redis 4.0/5.0/6.0 instances. DCS Redis 3.0 instances and single-node DCS Redis 4.0/5.0/6.0 instances do not support this function.

- A master/standby instance has only one shard with one master and one replica by default. You can view the sharding information on the Shards and Replicas page. To manually switch the master and replica roles, see Performing a Master/Standby Switchover for a DCS Instance.
- A Proxy Cluster instance has multiple shards. Each shard has one master and one replica by default. On the Shards and Replicas page, you can view the sharding information and manually switch the master and replica roles. For details about the number of shards corresponding to different instance specifications, see Proxy Cluster DCS Redis 4.0 and 5.0 Instances.
- A Redis Cluster instance has multiple shards. Each shard has one master and one replica by default. On the Shards and Replicas page, you can view the sharding information and manually switch the master and replica roles. For details about the number of shards corresponding to different instance specifications, see Redis Cluster.

Promoting a Replica to Master

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**. The **Cache Manager** page is displayed.
- **Step 4** Click an instance.
- Step 5 Click the Shards and Replicas tab.

The page displays all shards in the instance and the list of replicas of each shard.

Step 6 Click \checkmark to show all replicas of a shard.

Figure 6-1 Lists of shards and replicas (cluster)

Sł	ards and Replicas						
	Shard Name		Shard ID			Replicas	
	∧ group-0		ab58d6ca-e9af-44bb-aff8-6b2d2d0ec6e4			2	
	Replica IP Address	Replica ID	Status 🕐	Role	AZ	Failover Priority (?)	Operation
	192.168.0.145	4b96e471-4030-470f-9093-6c194447783f	🕤 Running	Master	AZ3		
	192.168.0.120	06f99fd2-8f62-44ff-a948-46522484bd58	Running	Replica	AZ1	1002	Remove IP Address

Figure 6-2 Lists of shards and replicas (master/standby)

Sh	ards and Replicas							С
	Shard Name		Shard ID			Replicas		
	∧ group-0		4a682cde-03ab-47a5-9ae5-aef997e32	4a682cde-03ab-47a5-9ae5-aef997e32342			2	
	Replica IP Address	Replica ID	Status (?)	Role	AZ	Failover Priority (?)	Operation	
	10.2.1.82	1fd335bb-b3c9-4c1b-af28-2fa577fe9256	Running	Master	AZ1			
	10.2.1.235	976dc7d1-3980-49ab-bfb8-ffa561684726	Running	Replica	AZ2	100 🖉	Remove IP Address	

- For a cluster instance, you can promote a replica in a shard to be master.
 - a. Click **Promote to Master** in the row containing another replica which is in the "Replica" role.
 - b. Click Yes.
- For a master/standby instance, you can set failover priority for replicas or remove the IP address.
 - a. Failover priority: If the master fails, the replica with the smallest priority number is automatically promoted to master. For multiple replicas that have the same priority, a selection process will be performed. **0** indicates that the replica will never be automatically promoted, **1** indicates the highest priority, and **100** indicates the lowest priority.
 - b. **Remove IP address**: If an instance has more than one replicas (excluding master), click **Remove IP Address** to remove the IP addresses of extra replicas. After a replica IP address is removed, the read-only domain name will no longer be resolved to the replica IP address. If a master/ standby instance has only one replica, its IP address cannot be removed.

----End

6.8 Analyzing Big Keys and Hot Keys

By performing big key analysis and hot key analysis, you will have a picture of keys that occupy a large space and keys that are the most frequently accessed.

Notes on big key analysis:

- All DCS Redis instances support big key analysis.
- During big key analysis, all keys will be traversed. The larger the number of keys, the longer the analysis takes.
- Perform big key analysis during off-peak hours and avoid automatic backup periods.

- For a master/standby or cluster instance, the big key analysis is performed on the standby node, so the impact on the instance is minor. For a single-node instance, the big key analysis is performed on the only node of the instance and will reduce the instance access performance by up to 10%. Therefore, perform big key analysis on single-node instances during off-peak hours.
- A maximum of 100 big key analysis records (20 for Strings and 80 for Lists/ Sets/Zsets/Hashes) are retained for each instance. When this limit is reached, the oldest records will be deleted to make room for new records. You can also manually delete records you no longer need.

Notes on hot key analysis:

- Only DCS Redis 4.0/5.0/6.0 instances support hot key analysis, and the maxmemory-policy parameter of the instances must be set to allkeys-lfu or volatile-lfu.
- During hot key analysis, all keys will be traversed. The larger the number of keys, the longer the analysis takes.
- Perform hot key analysis shortly after peak hours to ensure the accuracy of the analysis results.
- The hot key analysis is performed on the master node of each instance and will reduce the instance access performance by up to 10%.
- A maximum of 100 hot key analysis records are retained for each instance. When this limit is reached, the oldest records will be deleted to make room for new records. You can also manually delete records you no longer need.

NOTE

Perform big key and hot key analysis during off-peak hours to avoid 100% CPU usage.

Big Key Analysis Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of a DCS Redis instance.
- Step 5 Choose Analysis and Diagnosis > Cache Analysis.
- **Step 6** On the **Big Key Analysis** tab page, manually perform big key analysis or schedule daily automatic analysis.
- **Step 7** After an analysis task completes, click **View** to view the analysis results.

You can view the analysis results of different data types.

NOTE

A maximum of 20 big key analysis records are retained for Strings and 80 are retained for Lists, Sets, Zsets, and Hashes.

Hot Key Analysis Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of a DCS Redis instance.
- Step 5 Choose Analysis and Diagnosis > Cache Analysis.
- **Step 6** On the **Hot Key Analysis** tab page, manually perform hot key analysis or schedule daily automatic analysis.

NOTE

If hot key analysis cannot be performed, set **maxmemory-policy** to **allkeys-lfu** or **volatile-lfu**. If this parameter has already been set to **allkeys-lfu** or **volatile-lfu**, perform hot key analysis right away.

Step 7 After an analysis task completes, click **View** to view the analysis results.

The hot key analysis results are displayed.

The console displays a maximum of 100 hot key analysis records for each instance.

Parameter	Description
Кеу	Name of a hot key.
Туре	Type of a hot key, which can be string, hash, list, set, or sorted set.
Size	Size of the hot key value.
FREQ	Reflects the access frequency of a key within a specific period of time.
	FREQ is the logarithmic access frequency counter. The maximum value of FREQ is 255, which indicates 1 million access requests. After FREQ reaches 255 , it will no longer increment even if access requests continue to increase. FREQ will decrement by 1 for every minute during which the key is not accessed.
DataBase	Database where a hot key is located.

Table 6-3 Results of hot key a

6.9 Scanning Expired Keys

Background

There are two ways to delete a key in Redis.

- Use the **DEL** command to directly delete a key.
- Use commands such as **EXPIRE** to set a timeout on a key. After the timeout elapses, the key becomes inaccessible but is not deleted immediately because Redis is mostly single-threaded. Redis uses the following strategies to release the memory used by expired keys:
 - Lazy free deletion: The deletion strategy is controlled in the main I/O event loop. Before a read/write command is executed, a function is called to check whether the key to be accessed has expired. If it has expired, it will be deleted and a response will be returned indicating that the key does not exist. If the key has not expired, the command execution resumes.
 - Scheduled deletion: A time event function is executed at certain intervals.
 Each time the function is executed, a random collection of keys are checked, and expired keys are deleted. (By default, 10 checks are executed every second. Each check randomly scans 20 keys which are set to expire.)

NOTE

To avoid prolonged blocks on the Redis main thread, not all keys are checked in each time event. Instead, a random collection of keys are checked each time. As a result, the memory used by expired keys cannot be released quickly.

Expired Key Scan

DCS integrates these strategies and allows you to periodically release the memory used by expired keys. You can configure scheduled scans on the master nodes of your instances. The entire keyspace is traversed during the scans, triggering Redis to check whether the keys have expired and to remove expired keys if any.

NOTE

This function is supported only by DCS Redis 4.0, 5.0, and 6.0 basic instances. Perform expired key scans during off-peak hours to avoid 100% CPU usage.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click ^(Q) in the upper left corner of the management console and select a region.

NOTE

Select the same region as your application service.

Step 3 In the navigation pane, choose **Cache Manager**.

Step 4 Click the name of a DCS Redis instance.

Step 5 Choose **Analysis and Diagnosis** > **Cache Analysis**.

- Step 6 On the Expired Key Scan tab page, scan for expired keys and release them.
 - Click Start Scanning to scan for expired keys immediately.
 - Enable **Scheduled** to schedule automatic scans at a specified time. For details about how to configure automatic scans, see **Scheduling Automatic Scans**.
- **Step 7** After the expired key scan task is submitted, view it in the task list.

Figure 6-3 Expired key scan tasks

Cache Analysis								
Big Key Analysis Hot Key Analysis Expired Key Scan								
() The keyspace will be scanned to release the memory used by expired keys that were not released due to the laxy free mechanism. This scan is on the matter node of the instance and will affect instance performance. Learn more								
Scheduled On Start At Oct 25, 2021 16:09:56 GMT+08	8:00 Interval 1 day Timeout 2 days	Keys to Iterate 10 🖉						
Start Scanning								
Task ID	Status	Mode	Started	Completed				
c06a68c9-2c2d-4b75-8bd3-99191f93ad25	Successful	Scheduled	Oct 25, 2021 16:10:00 GMT+08:00	Oct 25, 2021 16:10:06 GMT+08:00				

----End

NOTE

The scan fails in the following scenarios:

- An exception occurred.
- There are too many keys, resulting in a timeout. Some keys have already been deleted before the timeout.

Scheduling Automatic Scans

To schedule automatic scans, click next to **Scheduled**. Set the parameters as required, and click **OK**.

 Table 6-4 describes the parameters for scheduling automatic scans.

Tuble • I fullatticeles for beneducing ducontatte seatis	Table 6-4	Parameters	for	scheduling	automatic scans
---	-----------	------------	-----	------------	-----------------

Parameter	Description	Value Range	Default Value	Remarks
Start At	The first scan can only start after the current time.	Format: yyyy/MM/dd hh:mm:ss	-	-

Parameter	Description	Value Range	Default Value	Remarks
Interval	Interval between scans.	0 to 43,200 (unit: minute)	Value 1440	 If the previous scan is not complete when the start time arrives, the upcoming scan will be skipped. If the previous scan is complete within five minutes after the start time, the upcoming scan will not be skipped. NOTE Continuou s scans may cause high CPU usage. Set this parameter based on the total number of keys in the instance and the increase of keys. For details, see the following performan ce description
				configurati on suggestion s.
Parameter	Description	Value Range	Default Value	Remarks
-----------	--	-------------------------------	------------------	---
Timeout	This parameter is used to prevent scanning timeout due to unknown reasons. If scanning times out due to unknown reasons, subsequent scheduled tasks cannot be executed. After the specified timeout elapses, a failure message is returned and the next scan will be performed.	1 to 86,400 (unit: minute)	2880	 Set the timeout to at least twice the interval. You can set a value based on the time taken in previous scans and the maximum timeout that can be tolerated in the application scenario.

Parameter	Description	Value Range	Default Value	Remarks
Keys to Iterate	The SCAN command is used to iterate the keys in the current database. The COUNT option is used to let the user tell the iteration command how many elements should be returned from the dataset in each iteration. For details, see the description of the SCAN command. Iterative scanning can reduce the risks of slowing down Redis when a large number of keys are scanned at a time.	10 to 1000	10	For example, if there are 10 million keys in Redis and the number of keys to iterate is set to 1000, a full scan will be complete after 10,000 iterations.

Performance

- The **SCAN** command is executed at the data plane every 5 ms, that is, 200 times per second. If **Keys to Iterate** is set to **10**, **100**, or **1000**, 2000, 20,000, or 200,000 keys are scanned per second.
- The larger the number of keys scanned per second, the higher the CPU usage.

Reference test

A master/standby instance is scanned. There are 10 million keys that will not expire and 5 million keys that will expire. The expiration time is 1 to 10 seconds.

• Natural deletion: 10,000 records are deleted per second. It takes 8 minutes to delete 5 million expired keys. The CPU usage is about 5%.

- **Keys to Iterate** set to **10**: The scanning takes 125 minutes (15 million/ 2000/60 seconds) and the CPU usage is about 8%.
- **Keys to Iterate** set to **100**: The scanning takes 12.5 minutes (15 million/ 20,000/60 seconds) and the CPU usage is about 20%.
- **Keys to Iterate** set to **1000**: The scanning takes 1.25 minutes (15 million/ 200,000/60 seconds) and the CPU usage is about 25%.

Configuration suggestions

- You can configure the number of keys to be scanned and the scanning interval based on the total number of keys and the increase in the number of keys in the instance.
- In the reference test with 15 million keys and Keys to Iterate set to 10, the scanning takes about 125 minutes. In this case, set the interval to more than 4 hours.
- If you want to accelerate the scanning, set **Keys to Iterate** to **100**. It takes about 12.5 minutes to complete the scanning. Therefore, set the interval to more than 30 minutes.
- The larger the number of keys to iterate, the faster the scanning, and the higher the CPU usage. There is a trade-off between time and CPU usage.
- If the number of expired keys does not increase rapidly, you can scan expired keys once a day.

NOTE

Start scanning during off-peak hours. Set the interval to one day and the timeout to two days.

6.10 Managing IP Address Whitelist

DCS helps you control access to your DCS instances in the following ways, depending on the deployment mode:

- To control access to DCS Redis 3.0 instances, you can use security groups. Whitelists are not supported. For details about how to configure a security group, see Security Group Configurations.
- To control access to DCS Redis 4.0/5.0/6.0 instances, you can use whitelists. Security groups are not supported.

The following describes how to manage whitelists of a Redis 4.0/5.0/6.0 instance to allow access only from whitelisted IP addresses. If no whitelists are added for the instance or the whitelist function is disabled, all IP addresses that can communicate with the VPC can access the instance.

Creating a Whitelist Group

Step 1 Log in to the DCS console.

Step 2 Click ^(Q) in the upper left corner of the management console and select a region.

D NOTE

Select the same region as your application service.

- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of a DCS instance.
- **Step 5** Choose **Instance Configuration** > **Whitelist** and then click **Create Whitelist Group**.
- Step 6 In the Create Whitelist Group dialogue box, specify Group Name and IP Address/Range.

Parameter	Description	Example
Group Name	Whitelist group name of the instance.	DCS-test
	A maximum of four whitelist groups can be created for each instance.	
IP Address/ Range	A maximum of 20 IP addresses or IP address ranges can be added to an instance. Separate multiple IP addresses or IP address ranges with commas. Unsupported IP address and IP	10.10.10.1,10.10.10
	with commas. Unsupported IP address and IP address range: 0.0.0.0 and 0.0.0/0.	

 Table 6-5
 Whitelist parameters

Step 7 Click OK.

A whitelist group is automatically enabled for the instance once created. Only whitelisted IP addresses can access the instance.

NOTE

- In the whitelist group list, click **Modify** to modify the IP addresses or IP address ranges in a group, and click **Delete** to delete a whitelist group.
- After whitelist has been enabled, you can click **Disable Whitelist** above the whitelist group list to allow all IP addresses connected to the VPC to access the instance.

----End

6.11 Viewing Redis Slow Queries

Redis logs queries that exceed a specified execution time. You can view the slow query log on the DCS console to identify performance issues.

For details about the commands, visit the **Redis official website**.

Configure the slow log with the following parameters:

- **slowlog-log-slower-than**: The maximum time allowed, in microseconds, for command execution. If this threshold is exceeded, Redis will log the command. The default value is **10,000**. That is, if command execution exceeds 10 ms, the command will be logged.
- **slowlog-max-len**: The maximum allowed number of slow queries that can be logged. The default value is **128**. That is, if the number of slow queries exceeds 128, the earliest record will be deleted to make room for new ones.

For details about the configuration parameters, see **Modifying Configuration Parameters**.

NOTE

You can view the slow log of a Proxy Cluster DCS Redis 3.0 instance only if the instance is created after October 14, 2019. If the instance was created earlier, contact technical support to upgrade it. The upgrade adds the slow log function to the console, and does not affect services.

Viewing Slow Queries on the Console

Step 1 Log in to the DCS console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- Step 4 Click the name of a DCS instance.
- Step 5 Choose Analysis and Diagnosis > Slow Queries.
- **Step 6** Select a start date and an end date to view slow queries within the specified period.

NOTE

For details about the commands, visit the **Redis official website**.

Figure 6-4 Slow query log of an instance

Slow Log						
					11/04/2019-11/11/2019	₿ C
Executed 🗘	Duration (ms) 💠	Shard Name	Slow	v Query		
Nov 08, 2019 21:56:39 GMT+08:00	19.81	group-2	CON	IFIG SET cluster-migration-barrier 9999		
Nov 05, 2019 11:36:25 GMT+08:00	17.62	group-1	CON	IFIG REWRITE		

----End

6.12 Viewing Redis Run Logs

You can create run log files on the DCS console to collect run logs of DCS Redis instances within a specified period. After the logs are collected, you can download the log files to view the logs.

This function is supported by DCS Redis 4.0 instances and later.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ⁽²⁾ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of a DCS instance.
- **Step 5** Click the **Run Logs** tab.

Step 6 Click Create Log File.

If the instance is the master/standby or cluster type, you can specify the shard and replica whose run logs you want to collect. If the instance is the single-node type, logs of the only node of the instance will be collected.

Select the collection period and click **OK**.

Step 7 After the log file is successfully collected, click **Download** to download it.

----End

6.13 Diagnosing an Instance

Scenario

If a fault or performance issue occurs, you can ask DCS to diagnose your instance to learn about the cause and impact of the issue and how to handle it.

Restrictions

DCS Redis 3.0 instances do not support diagnosis.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click Sin the upper left corner of the management console and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of a DCS Redis instance.
- Step 5 Choose Analysis and Diagnosis > Instance Diagnosis.
- **Step 6** Specify the tested object and time range, and click **Start Diagnosis**.
 - **Tested Object**: You can select a single node or all nodes. By default, all nodes are tested.
 - **Range**: You can specify up to 10 minutes before a point in time in the last 7 days.

In the following figure, the instance data between 18:03:37 and 18:13:37 on January 7, 2021 will be diagnosed.

Figure 6-5 Specifying the tested object and time range

Tested Objects	Select nodes to test	•
Range	- 10 + min before Apr 29, 2021 19:06:50	

Step 7 After the diagnosis is complete, you can view the result in the **Test History** list. If the result is abnormal, click **View Report** for details.

In the report, you can view the cause and impact of abnormal items and suggestions for handling them.

----End

6.14 Configuring SSL

DCS Redis 6.0 instances support SSL encryption to ensure data transmission security. This function is not available for other instance versions. RESP (REdis Serialization Protocol), the communication protocol of Reids, only supports plaintext transmission in versions earlier than Redis 6.0.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click Sin the upper left corner of the management console and select the region where your instance is located.
- Step 3 In the navigation pane, choose Cache Manager.
- **Step 4** On the **Cache Manager** page, click a DCS instance.
- Step 5 In the navigation pane, choose SSL.
- **Step 6** Click A next to **SSL Certificate** to enable or disable SSL.

NOTICE

- Enabling or disabling SSL will restart the instance and disconnect it for a few seconds. Wait until off-peak hours and ensure that your application can reconnect.
- The restart cannot be undone. For single-node DCS instances and other instances where AOF persistence is disabled (**appendonly** is set to **no**), data will be cleared and ongoing backup tasks will be stopped. Exercise caution when performing this operation.
- Enabling SSL will deteriorate read/write performance.

Step 7 Click Download Certificate to download the SSL certificate.

Step 8 Decompress the SSL certificate and upload the decompressed **ca.crt** file to the server where the Redis client is located.

Step 9 Add the path of the **ca.crt** file to the command for connecting to the instance. If you use redis-cli to connect to an instance, refer to **Accessing a DCS Redis Instance Through redis-cli**.

----End

7 Backing Up and Restoring DCS Instances

7.1 Overview

On the DCS console, you can back up and restore DCS instances.

Importance of DCS Instance Backup

There is a small chance that inconsistent data could exist in a DCS instance owing to service system exceptions or problems in loading data from persistence files. In addition, some systems demand not only high reliability but also data security, data restoration, and even permanent data storage.

Currently, data in DCS instances can be backed up to OBS. If a DCS instance becomes faulty, data in the instance can be restored from backup so that service continuity is not affected.

Backup Modes

DCS instances support the following backup modes:

• Automated backup

You can create a scheduled backup policy on the DCS console. Then, data in the chosen DCS instances will be automatically backed up at the scheduled time.

You can choose the days of the week on which scheduled backup will run. Backup data will be retained for a maximum of seven days. Backup data older than seven days will be automatically deleted.

The primary purpose of scheduled backups is to create complete data replicas of DCS instances so that the instance can be quickly restored if necessary.

Manual backup

Backup requests can be issued manually. Data in the chosen DCS instances will be backed up to OBS.

Before performing high-risk operations, such as system maintenance or upgrade, back up DCS instance data.

When a DCS instance is in use, its backup data will not be automatically deleted. You can manually delete backup data as required. When you delete

the instance, its backup data is deleted along with the instance. If you need the backup data, download and save it in advance.

Additional Information About Data Backup

- Instance type
 - Redis: Only master/standby, Proxy Cluster, and Redis Cluster instances can be backed up and restored, while single-node instances cannot. However, you can export data of a single-node instance to an RDB file using rediscli. For details, see Can I Export Backup Data of DCS Redis Instances to RDB Files Using the Console?
- Backup mechanisms

DCS for Redis 3.0 persists data with Redis AOF. DCS for Redis 4.0/5.0/6.0 persist data to RDB or AOF files in manual backup mode, and to RDB files in automatic backup mode.

Backup tasks run on standby cache nodes. DCS instance data is backed up by compressing and storing the data persistence files from the standby cache node to OBS.

DCS checks instance backup policies once an hour. If a backup policy is matched, DCS runs a backup task for the corresponding DCS instance.

• Impact on DCS instances during backup

Backup tasks run on standby cache nodes, without incurring any downtime.

In the event of full-data synchronization or heavy instance load, it takes a few minutes to complete data synchronization. If instance backup starts before data synchronization is complete, the backup data will be slightly behind the data in the master cache node.

During instance backup, the standby cache node stops persisting the latest changes to disk files. If new data is written to the master cache node during backup, the backup file will not contain the new data.

• Backup time

It is advisable to back up instance data during off-peak periods.

• Storage of backup files

Backup files are stored to OBS.

• Handling exceptions in scheduled backup

If a scheduled backup task is triggered while the DCS instance is restarting or being scaled up, the scheduled backup task will be run in the next cycle.

If backing up a DCS instance fails or the backup is postponed because another task is in progress, DCS will try to back up the instance in the next cycle. A maximum of three retries are allowed within a single day.

• Retention period of backup data

Scheduled backup files are retained for up to seven days. You can configure the retention period. At the end of the retention period, most backup files of the DCS instance will be automatically deleted, but at least one backup file will be retained.

Manual backup files are retained permanently and need to be manually deleted.

Data Restoration

- Data restoration process
 - a. You can initiate a data restoration request using the DCS console.
 - b. DCS obtains the backup file from OBS.
 - c. Read/write to the DCS instance is suspended.
 - d. The original data persistence file of the master cache node is replaced by the backup file.
 - e. The new data persistence file (that is, the backup file) is reloaded.
 - f. Data is restored, and the DCS instance starts to provide read/write service again.
- Impact on service systems

Restoration tasks run on master cache nodes. During restoration, data cannot be written into or read from instances.

Handling data restoration exceptions

If a backup file is corrupted, DCS will try to fix the backup file while restoring instance data. If the backup file is successfully fixed, the restoration proceeds. If the backup file cannot be fixed, the master/standby DCS instance will be changed back to the state in which it was before data restoration.

7.2 Configuring an Automatic Backup Policy

On the DCS console, you can configure an automatic backup policy. The system then backs up data in your instances according to the backup policy.

By default, automatic backup is disabled. To enable it, perform the operations described in this section. Single-node instances do not support backup and restoration.

If automatic backup is not required, disable the automatic backup function in the backup policy.

Prerequisites

A master/standby or cluster DCS instance is in the Running state.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS instance to display more details about the DCS instance.
- **Step 5** On the instance details page, click **Backups & Restorations**.
- **Step 6** Slide **()** to the right to enable automatic backup. Backup policies will be displayed.

Parameter	Description
Backup Schedule	Day of a week on which data in the chosen DCS instance is automatically backed up.
	You can select one or multiple days of a week.
Retention Period (days)	The number of days that automatically backed up data is retained.
	Backup data will be permanently deleted at the end of retention period and cannot be restored. Value range: 1–7.
Start Time	Time at which automatic backup starts. Value: the full hour between 00:00 to 23:00
	The DCS checks backup policies once every hour. If the backup start time in a backup policy has arrived, data in the corresponding instance is backed up.
	NOTE Instance backup takes 5 to 30 minutes. The data added or modified during the backup process will not be backed up. To reduce the impact of backup on services, it is recommended that data should be backed up during off-peak periods.
	Only instances in the Running state can be backed up.

Table 7-1	Parameters	in a	backup	policy
-----------	------------	------	--------	--------

Step 7 Click OK.

Step 8 Automatic backup starts at the scheduled time. You can view backup records on the current page.

After the backup is complete, click **Download**, **Restore**, or **Delete** next to the backup record as required.

----End

7.3 Manually Backing Up a DCS Instance

You need to manually back up data in DCS instances in a timely manner. This section describes how to manually back up data in master/standby instances using the DCS console.

By default, manually backed up data is permanently retained. If backup data is no longer in use, you can delete it manually.

Prerequisites

At least one master/standby DCS instance is in the **Running** state.

Procedure

Step 1 Log in to the DCS console.

Step 2 Click ¹ in the upper left corner and select a region and a project.

- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS instance to display more details about the DCS instance.
- **Step 5** On the instance details page, click **Backups & Restorations**.
- Step 6 Click Create Backup.
- **Step 7** Select a backup file format.

Only DCS Redis 4.0 and later instances support backup file format selection.

Step 8 In the Create Backup dialog box, click OK.

Information in the **Description** text box cannot exceed 128 bytes.

After the backup is complete, click **Download**, **Restore**, or **Delete** next to the backup record as required.

NOTE

Instance backup takes 10 to 15 minutes. The data added or modified during the backup process will not be backed up.

----End

7.4 Restoring a DCS Instance

On the DCS console, you can restore backup data to a chosen DCS instance.

Prerequisites

- At least one master/standby or cluster DCS instance is in the **Running** state.
- A backup task has been run to back up data in the instance to be restored and the status of the backup task is **Succeeded**.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the name of the DCS instance to display more details about the DCS instance.
- **Step 5** On the instance details page, click **Backups & Restorations**.

A list of historical backup tasks is then displayed.

- **Step 6** Click **Restore** in the same row as the chosen backup task.
- **Step 7** Click **OK** to start instance restoration.

Information in the **Description** text box cannot exceed 128 bytes.

The **Restoration History** tab page displays the result of the instance restoration task.

D NOTE

Instance restoration takes 1 to 30 minutes.

While being restored, DCS instances do not accept data operation requests from clients because existing data is being overwritten by the backup data.

----End

7.5 Downloading a Backup File

Automatically backed up data can be retained for a maximum of 7 days. Manually backed up data is not free of charge and takes space in OBS. Due to these limitations, you are advised to download the RDB and AOF backup files and permanently save them on the local host.

This function is supported only by master/standby and cluster instances, and not by single-node instances. To export the data of a single-node instance to an RDB file, you can use redis-cli. For details, see **How Do I Export DCS Redis Instance Data?**

To export the data of a master/standby or cluster instance, do as follows:

- Redis 3.0: Export the instance data to AOF files by using the DCS console, or to RDB files by running the redis-cli -h {redis_address} -p 6379 [-a {password}] --rdb {output.rdb} command by using redis-cli.
- Redis 4.0 and later: Export the instance data to AOF or RDB files by using the DCS console.

Prerequisites

The instance has been backed up and the backup is still valid.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.

Filter DCS instances to find the desired one.

- **Step 4** Click the name of the DCS instance to display more details about the DCS instance.
- **Step 5** On the instance details page, click **Backups & Restorations**.

A list of historical backup tasks is then displayed.

- **Step 6** Select the historical backup data to be downloaded, and click **Download**.
- **Step 7** In the displayed, **Download Backup File** dialog box, select either of the following two download methods.

Download methods:

- By URL
 - a. Set the URL validity period and click **Query**.
 - b. Download the backup file by using the URL list.

D NOTE

If you choose to copy URLs, use quotation marks to quote the URLs when running the **wget** command in Linux. For example:

wget 'https://obsEndpoint.com:443/redisdemo.rdb? parm01=value01&parm02=value02'

This is because the URL contains the special character and (&), which will confuse the **wget** command. Quoting the URL facilitates URL identification.

• By OBS

Perform the procedure as prompted.

----End

8 Migrating Data with DCS

8.1 Introduction to Migration with DCS

Migration Modes

DCS for Redis supports online migration (in full or incrementally) and backup migration (by importing backup files).

- Backup migration is suitable when the source and target Redis instances are not connected, and the source Redis instance does not support the SYNC and PSYNC commands. The data source can be an OBS bucket or a Redis instance.
 - Importing data from an OBS bucket: Download the source Redis data and then upload it to an OBS bucket in the same region as the target DCS Redis instance. DCS will read the backup data from the OBS bucket and migrate the data into the target instance.

This migration mode can be used for migrating data from other Redis vendors or self-hosted Redis to DCS for Redis.

- Importing data from a Redis instance: Back up the source Redis data and then migrate the backup data to DCS for Redis.
- Migrating data online: If the source and target instances are interconnected and the SYNC and PSYNC commands are supported in the source instance, data can be migrated online in full or incrementally from the source to the target.

The following table describes data migration modes supported by DCS.

Migrati Source		Target: DCS			
on Mode		Single-node or master/ standby	Proxy Cluster	Redis Cluster	
lmporti ng	AOF file	\checkmark	\checkmark	\checkmark	

Table 8-1 DCS data migration modes

				-
backup files	RDB file	\checkmark	\checkmark	\checkmark
Migrati ng data online	DCS for Redis: single-node or master/ standby	\checkmark	\checkmark	\checkmark
	DCS for Redis: Proxy Cluster NOTE Proxy Cluster DCS Redis 3.0 instances cannot be used as the source, while Proxy Cluster DCS Redis 4.0 or 5.0 instances can.	√	√	√
	DCS for Redis: Redis Cluster	\checkmark	\checkmark	\checkmark
	Self-hosted Redis: single- node or master/ standby	\checkmark	\checkmark	\checkmark
	Self-hosted Redis: proxy- based cluster	\checkmark	\checkmark	\checkmark
	Self-hosted Redis: Redis Cluster	\checkmark	\checkmark	\checkmark
	Other Redis: single-node or master/ standby	×	×	×
	Other Redis: proxy-based cluster	×	×	×
	Other Redis: Redis Cluster	×	×	×

- DCS for Redis refers to Redis instances provided by DCS
- Self-hosted Redis refers to self-hosted Redis on the cloud, from other cloud vendors, or in on-premises data centers.
- Other Redis refers to Redis services provided by other cloud vendors.
- \checkmark : Supported. ×: Not supported.
- You can migrate data online in full or incrementally from **other cloud Redis** to **DCS for Redis** if they are connected and the **SYNC** and **PSYNC** commands can be run on the source Redis. However, some instances provided by other cloud vendors may fail to be migrated online. In this case, migrate data through backup import or use other migration schemes. (Migration Tools and Schemes)

8.2 Importing Backup Files

8.2.1 Importing Backup Files from an OBS Bucket

Scenario

Use the DCS console to migrate Redis data from Redis of other vendors or self-hosted Redis to DCS for Redis.

Simply download the source Redis data and then upload the data to an OBS bucket in the same region as the target DCS Redis instance. After you have created a migration task on the DCS console, DCS will read data from the OBS bucket and data will be migrated to the target instance.

.aof, .rbb, .zip, and .tar.gz files can be uploaded to OBS buckets. You can directly upload .aof and .rdb files or compress them into .zip or .tar.gz files before uploading.

Prerequisites

- The OBS bucket must be in the same region as the target DCS Redis instance.
- The data files to be uploaded must be in the .aof, .rdb, .zip, or .tar.gz format.
- To migrate data from a single-node or master/standby Redis instance of other cloud vendors, create a backup task and download the backup file.
- To migrate data from a cluster Redis instance of other cloud vendors, download all backup files and upload all of them to the OBS bucket. Each backup file contains data for a shard of the instance.

Step 1: Prepare the Target DCS Redis Instance

- If a DCS Redis instance is not available, create one first. For details, see Creating a DCS Redis Instance.
- If a DCS Redis instance is available, you do not need to create a new one. However, you can clear the instance data before the migration.
 - If the target instance is Redis 4.0 and later, clear the data by referring to Clearing DCS Instance Data.
 - If the target instance is a DCS Redis 3.0 instance, run the **FLUSHALL** command to clear data.

- If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.
- Redis is backward compatible. The target instance version must be the same as or later than the source instance version.

Step 2: Create an OBS Bucket and Upload Backup Files

- **Step 1** Create an OBS bucket.
 - 1. Log in to the OBS Console and click **Create Bucket**.
 - Select a region.
 The OBS bucket must be in the same region as the target DCS Redis instance.
 - 3. Specify **Bucket Name**.

The bucket name must meet the naming rules specified on the console.

- 4. Set Storage Class to Standard, Warm or Cold.
- 5. Set Bucket Policy to Private, Public Read, or Public Read and Write.
- 6. Configure default encryption.
- 7. Click Create Now.
- Step 2 Upload the backup data files to the OBS bucket by using OBS Browser+.

If the backup file to be uploaded does not exceed 5 GB, upload the file using the OBS console by referring to step **Step 3**.

If the backup file to be uploaded is larger than 5 GB, perform the following steps to upload the file using OBS Browser+.

1. Download OBS Browser+.

For details, see section "Downloading OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

2. Install OBS Browser+.

For details, see section "Installing OBS Browser+" in *Object Storage Service* (*OBS) Tools Guide (OBS Browser+)* > "Getting Started".

3. Log in to OBS Browser+.

For details, see section "Logging In to OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

- 4. Create a bucket.
- 5. Upload backup data.
- **Step 3** On the OBS console, upload the backup data files to the OBS bucket.

Perform the following steps if the backup file size does not exceed 5 GB:

- 1. In the bucket list, click the name of the created bucket.
- 2. In the navigation pane, choose **Objects**.
- 3. On the **Objects** tab page, click **Upload Object**.
- 4. Upload the objects.

To upload objects, drag files or folders to the **Upload Object** area or click **add file**. A maximum of 100 files can be uploaded at a time. The total size cannot exceed 5 GB.

Figure 8-1 Uploading an object

- 5. (Optional) Select KMS encryption to encrypt the file you want to upload.
- 6. Click Upload.

----End

Step 3: Create a Migration Task

Step 1 Log in to the DCS console.

- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Data Migration**.
- Step 4 Click Create Backup Import Task.
- Step 5 Specify Task Name and Description.
- **Step 6** Select **OBS Bucket** as the data source and then select the OBS bucket to which you have uploaded backup files.

NOTE

You can upload files in the .aof, .rdb, .zip, or .tar.gz format.

Figure 8-2 Importing backup files

Source Redis			
* Data Source	OBS bucket	Redis	
* OBS Bucket		•	C View Bucket
* Backup Files	To import data from multiple	backup files, you can crea	ite multiple migration tasks and run them at a time.
	Name		Path

- **Step 7** Select the backup files whose data is to be migrated.
- **Step 8** Select the target DCS Redis instance prepared in **Step 1: Prepare the Target DCS Redis Instance**.
- **Step 9** Enter the password of the target instance. Click **Test Connection** to verify the password.
- Step 10 Click Next.
- **Step 11** Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

----End

8.2.2 Importing Backup Files from Redis

Scenario

Use the DCS console to migrate Redis data from self-hosted Redis to DCS for Redis.

Simply back up your Redis data, create a migration task on the DCS console, and then import the backup to a DCS Redis instance.

Prerequisites

A master/standby or cluster DCS Redis instance has been created as the target for the migration. The source instance has data and has been backed up.

Step 1: Obtain the Source Instance Name and Password

Obtain the name of the source Redis instance.

Step 2: Prepare the Target DCS Redis Instance

- If a DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If a DCS Redis instance is available, you do not need to create a new one. However, you can clear the instance data before the migration.

- If the target instance is Redis 4.0 and later, clear the data by referring to **Clearing DCS Instance Data**.
- If the target instance is a DCS Redis 3.0 instance, run the **FLUSHALL** command to clear data.
- If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

Step 3: Create a Migration Task

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Data Migration**.
- Step 4 Click Create Backup Import Task.
- **Step 5** Enter the task name and description.
- Step 6 Set Data Source to Redis.
- Step 7 For source Redis, select the instance prepared in Step 1: Obtain the Source Instance Name and Password.
- **Step 8** Select the backup task whose data is to be migrated.
- **Step 9** Select the target instance created in **Step 2: Prepare the Target DCS Redis Instance**.
- **Step 10** Enter the password of the target instance. Click **Test Connection** to verify the password.
- Step 11 Click Next.
- **Step 12** Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

----End

8.3 Migrating Data Online

Scenario

If the source and target instances are interconnected and the **SYNC** and **PSYNC** commands are supported in the source instance, data can be migrated online in full or incrementally from the source to the target.

- If the **SYNC** and **PSYNC** commands are disabled on the source Redis instance, enable them before performing online migration. Otherwise, the migration fails. If you use a DCS Redis instance for online migration, the **SYNC** command is automatically enabled.
- You cannot use public networks for online migration.
- During online migration, you are advised to set repl-timeout on the source instance to 300s and client-output-buffer-limit to 20% of the maximum memory of the instance.

D NOTE

During online migration, results of the **FLUSHDB** and **FLUSHALL** commands executed on the source will not be synchronized to the target.

Impacts on Services

During online migration, data is essentially synchronized in full to a new replica. Therefore, perform online migration during low-demand hours.

Prerequisites

- Before migrating data, read through **Introduction to Migration with DCS** to learn about the DCS data migration function and select an appropriate target instance.
- To migrate data from a single-node or master/standby instance to a Redis Cluster instance, check if any data exists in DBs other than DB0 in the source instance. If yes, move the data to DB0 by using the open-source tool Rump. Otherwise, the migration will fail because a Redis Cluster instance has only one DB. For details about the migration operations, see Online Migration with Rump.
- By default, a Proxy Cluster instance has only one database (DB0). Before you migrate data from a single-node or master/standby instance to a Proxy Cluster instance, check whether any data exists on databases other than DB0. If yes, enable multi-DB for the Proxy Cluster instance by referring to Procedure for Enabling Multi-DB on a Single-DB Instance.

Step 1: Obtain Information About the Source Redis Instance

- If the source is a cloud Redis instance, obtain its name.
- If the source is self-hosted Redis, obtain its IP address or domain name and port number.

Step 2: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If a target instance is available, you do not need to create a new one. However, you must clear the instance data before the migration. For details, see **Clearing DCS Instance Data**.

If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

Step 3: Check the Network

NOTE

- If the source or target of online migration is **Redis in the cloud**, the selected Redis instance must be in the same VPC as the migration task. Otherwise, the migration task may fail to connect to the cloud Redis instance.
- In special scenarios, if you have enabled cross-VPC access between the migration task and the cloud Redis instance, the cloud Redis instance and the migration task can be in different VPCs.

Table 8-2 lists the requirements on the network between the online migration task, source Redis, and target Redis.

Table 8-2 Requirements on the network between the online migration task, source Redis, and target Redis

Sour ce Redi s Type	Targ et Redi s Type	Network Requirement on Online Migration
Redis in the clou d	Redis in the cloud	When creating an online migration task, ensure that the online migration task is in the same VPC as the source and target Redis. If they are not in the same VPC, enable cross-network access between the migration task and the source and target Redis. To enable cross-network access, create a VPC peering connection by referring to section "VPC Peering Connection" in <i>VPC User Guide</i> .
Redis in the clou d	Self- hoste d Redis	 When creating an online migration task, ensure that the migration task and the source Redis are in the same VPC. Then, enable cross-network access between the migration task and the target Redis. To enable cross-network access, create a VPC peering connection by referring to section "VPC Peering Connection" in VPC User Guide.
Self- host ed Redis	Redis in the cloud	When creating an online migration task, ensure that the migration task and the target Redis are in the same VPC. Then, enable cross-network access between the migration task and the source Redis. To enable cross-network access, create a VPC peering connection by referring to section "VPC Peering Connection" in <i>VPC User Guide</i> .

Sour ce Redi s Type	Targ et Redi s Type	Network Requirement on Online Migration
Self- host ed Redis	Self- hoste d Redis	After creating an online migration task, enable cross-network access between the migration task and the source and target Redis, respectively. To enable cross-network access, create a VPC peering connection by referring to section "VPC Peering Connection" in <i>VPC User</i> <i>Guide.</i>

Step 4: Create a Migration Task

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Data Migration**. The migration task list is displayed.
- Step 4 Click Create Online Migration Task.
- **Step 5** Enter the task name and description.
- **Step 6** Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

NOTICE

- The migration task uses a tenant IP address (**Migration ECS** displayed on the **Basic Information** page of the task.) If a whitelist is configured for the source or target instance, add the migration IP address to the whitelist or disable the whitelist.
- To allow the VM used by the migration task to access the source and target instances, set an outbound rule for the task's security group to allow traffic through the IP addresses and ports of the source and target instances. By default, all outbound traffic is allowed.

Step 7 Click Next.

Step 8 Click Submit.

----End

Configuring the Online Migration Task

Step 1 On the **Online Migration** tab page, click **Configure** in the row containing the online migration task you just created.

Step 2 Specify **Migration Type**.

Supported migration types are **Full** and **Full + incremental**, which are described in **Table 8-3**.

	Table	8-3	Migration	type	description
--	-------	-----	-----------	------	-------------

Migration Type	Description	
Full	Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source instance data updated during the migration will not be migrated to the target instance.	
Full + incremental	Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source and target instances.	
	Once incremental migration starts, it remains Migrating until you click Stop in the Operation column. After the migration is stopped, data in the source instance will not be lost, but data will not be written to the target instance. When the transmission network is stable, the delay of incremental migration is within seconds. The actual delay depends on the transmission quality of the network link.	

Figure 8-3 Selecting the migration type

Step 3 If Migration Type is set to Full + Incremental, you can specify a bandwidth limit.

The data synchronization rate can be kept around the bandwidth limit.

Step 4 Specify Auto-Reconnect.

If this option is enabled, automatic reconnections will be performed indefinitely in the case of a network exception.

Step 5 Configure source Redis and target Redis.

- 1. **Source Redis Type**: Select **Redis in the cloud** or **Self-hosted Redis** as required.
 - Redis in the cloud: a DCS Redis instance that is in the same VPC as the migration task
 - Self-hosted Redis: self-hosted Redis in another cloud, or in on-premises data centers. If you select this option, enter Redis addresses.

- 2. If the instance is password-protected, you can click **Test Connection** to check whether the instance password is correct and whether the network is connected.
- Step 6 For Target Instance, select the DCS Redis Instance prepared in Step 2: Prepare the Target DCS Redis Instance.

If the instance is password-protected, you can click **Test Connection** to check whether the instance password meets the requirements.

NOTE

If the source and target Redis instances are connected but are in different regions of DCS, you can only select **Self-hosted Redis** for **Target Redis Type** and enter the instance addresses, regardless of whether the target Redis instance is self-hosted or in the cloud.

Step 7 Click Next.

Step 8 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

NOTE

If the migration type is full+incremental, the migration task status will remain **Migrating** until you click **Stop**.

----End

Verifying the Migration

After the migration is complete, use redis-cli to connect the source and target Redis instances to check data integrity.

- 1. Connect to the source Redis and the target Redis.
- 2. Run the info keyspace command to check the values of keys and expires.

3. Calculate the differences between the values of **keys** and **expires** of the source Redis and the target Redis. If the differences are the same, the data is complete and the migration is successful.

During full migration, source Redis data updated during the migration will not be migrated to the target instance.

8.4 IP Switching

Scenario

Currently, you cannot change the instance type when using the specification modification function. To modify instance specifications while changing the

instance type, you can perform IP switching after data migration. By switching IP addresses, you can also change the AZ used by an instance.

- After online data migration is complete, you can switch the IP addresses.
- The IP addresses can be rolled back as required after the switching.

NOTE

- This function is supported by DCS Redis 4.0 instances and later.
- IP switching is supported only when both the source and target instances are Redis instances in the cloud.

Prerequisites

- Obtain information about the source and target instances. For details about preparing a target instance, see **Step 2: Prepare the Target DCS Redis Instance**.
- Ensure that the source and target instances can communicate with each other. For details, see Step 3: Check the Network.
- The target and source instances must use the same port.
- IP switching can be performed only when the following conditions are met:
 - IP switching depends on the data migration function. Therefore, the source and target instances must support the data migration function.
 For details, see Table 8-1.
 - Both the source and target instances are Redis instances in the cloud.
 - Table 8-4 lists the supported IP switching scenarios.

Table 8-4 IP switching scenarios

Source	Target
Single-node, read/write splitting, or master/standby	Single-node, master/standby, read/write splitting, or Proxy Cluster
Proxy Cluster	Single-node, master/standby, read/write splitting, or Proxy Cluster

Precautions for IP Switching

- 1. Online migration will stop during the switching.
- 2. Instances will be read-only for one minute and disconnected for several seconds during the switching.
- 3. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after the IP switching.
- 4. If the source and target instances are in different subnets, the subnet information will be updated after the switching.
- 5. If the source is a master/standby instance, the IP address of the standby node will not be switched. Ensure that this IP address is not used by your applications.

- 6. If your applications use a domain name to connect to Redis, the domain name will be used for the source instance. Select **Yes** for **Switch Domain Name**.
- 7. Ensure that the passwords of the source and target instances are the same. If they are different, verification will fail after the switching.
- 8. If a whitelist is configured for the source instance, ensure that the same whitelist is configured for the target instance before switching IP addresses.

Switching IP Addresses

Step 1 Log in to the DCS console.

- **Step 2** Click Sin the upper left corner of the management console and select the region where your instance is located.
- **Step 3** In the navigation pane, choose **Data Migration**.
- **Step 4** Click **Create Online Migration Task**.
- **Step 5** Enter the task name and description.
- **Step 6** Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

- **Step 7** Configure the migration task by referring to **Configuring the Online Migration Task**. Set **Migration Type** to **Full + Incremental**.
- Step 8 On the Online Migration page, when the migration task status changes to Incremental migration in progress, choose More > Switch IP in the Operation column.
- **Step 9** In the **Switch IP** dialog box, select whether to switch the domain name.

NOTE

- If a domain name is used, switch it or you must modify the domain name on the client.
- If no domain name is used, the DNS of the instances will be updated.
- **Step 10** Click **OK**. The IP address switching task is submitted successfully. When the status of the migration task changes to **IP switched**, the IP address switching is complete.

----End

Rolling Back IP Addresses

If you want to change the instance IP address to the original IP address, perform the following operations:

- **Step 1** Log in to the DCS console.
- **Step 2** Click where your instance is located.

- **Step 3** In the navigation pane, choose **Data Migration**.
- **Step 4** On the **Online Migration** page, locate the row that contains the migration task in the **IP switched** state, choose **More** > **Roll Back IP**.
- **Step 5** In the confirmation dialog box, click **Yes**. The IP address rollback task is submitted successfully. When the task status changes to **IP rolled back**, the rollback is complete.

----End

9 Managing Passwords

9.1 DCS Instance Passwords

Passwords can be configured to control access to your DCS instances, ensuring the security of your data.

You can set a password during or after instance creation. For details on how to set a password after an instance has been created, see **Resetting Instance Passwords**.

You can choose whether to enable password-free access based on your security and convenience trade-off.

NOTE

After 5 consecutive incorrect password attempts, the account for accessing the chosen DCS instance will be locked for 5 minutes. Passwords cannot be changed during the lockout period.

The password must meet the following requirements:

- Cannot be left blank.
- Cannot be the same as the old password.
- Can contain 8 to 32 characters.
- Must contain at least three of the following character types:
 - Lowercase letters
 - Uppercase letters
 - Digits
 - special characters (`~!@#\$^&*()-_=+\|{}:,<.>/?)

Scenarios Requiring Passwords

- For a DCS instance that is used on the live network or contains important information, you are advised to set a password.
- For a DCS instance with public access enabled, a password must be set to ensure data security.

For details on how to access an instance with a password, see **Accessing an Instance**.

Using Passwords Securely

1. Hide the password when using redis-cli.

If the **-a <password>** option is used in redis-cli in Linux, the password is prone to leakage because it is logged and kept in the history. You are advised not to use **-a <password>** when running commands in redis-cli. After connecting to Redis, run the **auth** command to complete authentication as shown in the following example:

\$ redis-cli -h 192.168.0.148 -p 6379 redis 192.168.0.148:6379>**auth** *yourPassword* OK redis 192.168.0.148:6379>

2. Use interactive password authentication or switch between users with different permissions.

If the script involves DCS instance access, use interactive password authentication. To enable automatic script execution, manage the script as another user and authorize execution using sudo.

3. Use an encryption module in your application to encrypt the password.

9.2 Changing Instance Passwords

On the DCS console, you can change the password required for accessing your DCS instance.

NOTE

- You cannot change the password of a DCS instance in password-free mode.
- The DCS instance for which you want to change the password is in the **Running** state.
- The new password takes effect immediately on the server without requiring a restart. The client must reconnect to the server using the new password after a pconnect connection is closed. (The old password can still be used before disconnection.)

Prerequisites

At least one DCS instance has been created.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.
- **Step 4** Choose **More > Change Password** in the same row as the chosen instance.
- Step 5 In the displayed dialog box, set Old Password, New Password, and Confirm Password.

D NOTE

After 5 consecutive incorrect password attempts, the account for accessing the chosen DCS instance will be locked for 5 minutes. Passwords cannot be changed during the lockout period.

The password must meet the following requirements:

- Cannot be left blank.
- The new password cannot be the same as the old password.
- Can contain 8 to 32 characters.
- Must contain at least three of the following character types:
 - Lowercase letters
 - Uppercase letters
 - Digits
 - special characters (`~!@#\$^&*()-_=+\|{}:,<.>/?)

Step 6 In the **Change Password** dialog box, click **OK** to confirm the password change.

----End

9.3 Resetting Instance Passwords

On the DCS console, you can configure a new password if you forget your instance password.

NOTE

- For a DCS Redis instance, you can change it from password mode to password-free mode or from password-free mode to password mode by resetting its password. For details, see Changing Password Settings for DCS Redis Instances.
- The DCS instance for which you want to reset the password is in the **Running** state.
- The new password takes effect immediately on the server without requiring a restart. The client must reconnect to the server using the new password after a pconnect connection is closed. (The old password can still be used before disconnection.)

Prerequisites

At least one DCS instance has been created.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.
- **Step 4** Choose **More** > **Reset Password** in the row containing the chosen instance.
- **Step 5** In the **Reset Password** dialog box, enter a new password and confirm the password.

D NOTE

The password must meet the following requirements:

- Cannot be left blank.
- Can contain 8 to 32 characters.
- Contain at least three of the following character types:
 - Lowercase letters
 - Uppercase letters
 - Digits
 - special characters (`~!@#\$^&*()-_=+\|{}:,<.>/?)

Step 6 Click OK.

NOTE

The system will display a success message only after the password is successfully reset on all nodes. If the reset fails, the instance will restart and the password of the cache instance will be restored.

----End

9.4 Changing Password Settings for DCS Redis Instances

Scenario

DCS Redis instances can be accessed with or without passwords. After an instance is created, you can change its password setting in the following scenarios:

- To enable public access for a password-free DCS Redis 3.0 instance, you must change the instance to password-protected mode before enabling public access.
- To access a DCS Redis instance in password-free mode, you can enable password-free access to clear the existing password of the instance.

D NOTE

- To change the password setting, the DCS Redis instance must be in the **Running** state.
- Password-free access may compromise security. You can set a password by using the password reset function.
- For security purposes, password-free access must be disabled when public access is enabled.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- Step 4 To change the password setting for a DCS Redis instance, choose Operation > More > Reset Password in the same row as the chosen instance.

Step 5 In the **Reset Password** dialogue box, perform either of the following operations as required:

- From password-protected to password-free: Switch the toggle for **Password-Free Access** and click **OK**.
- From password-free to password-protected: Enter a password, confirm the password, and click **OK**.

----End

10 Parameter Templates

10.1 Viewing Parameter Templates

This section describes how to view parameter templates on the DCS console.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Parameter Templates.
- Step 4 Choose the Default Templates or Custom Templates tab.
- **Step 5** View parameter templates.

Currently, you can enter a keyword in the search box to search for a parameter template by template name.

Step 6 Click a parameter template. The parameters contained in the template are displayed. For details about the parameters, see **Table 10-1**.
Parameter	Description	Value Range	Default Value
timeout	The maximum amount of time (in seconds) a connection between a client and the DCS instance can be allowed to remain idle before the connection is terminated. A setting of 0 means that this function is disabled. Proxy Cluster instances do not have this parameter.	0-7200 seconds	0
appendfsync	Controls how often fsync() transfers cached data to the disk. Note that some OSs will perform a complete data transfer but some others only make a "best- effort" attempt. There are three settings: no: fsync() is never called. The OS will flush data when it is ready. This mode offers the highest performance. always: fsync() is called after every write to the AOF. This mode is very slow, but also very safe. everysec: fsync() is called once per second. This mode provides a compromise between safety and performance. Single-node instances do not have this parameter.	 no always everysec 	no

 Table 10-1 DCS Redis instance configuration parameters

Parameter	Description	Value Range	Default Value
appendonly	Indicates whether to log each modification of the instance. By default, data is written to disks asynchronously in Redis. If this function is disabled, recently- generated data might be lost in the event of a power failure. Options: yes: enabled no: disabled Single-node instances do not have this parameter.	 yes no 	yes
client-output- buffer-limit- slave-soft- seconds	Number of seconds that the output buffer remains above client- output-buffer-slave- soft-limit before the client is disconnected. Single-node instances do not have this parameter.	0–60	60
client-output- buffer-slave- hard-limit	Hard limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the hard limit, the client is immediately disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
client-output- buffer-slave- soft-limit	Soft limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the soft limit and continuously remains above the limit for the time specified by the client-output-buffer- limit-slave-soft-seconds parameter, the client is disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.

Parameter	Description	Value Range	Default Value
maxmemory- policy	The deletion policy to apply when the maxmemory limit is reached. Options:	Depends on the instance version.	Depends on the instance version
	volatile-lru: Evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set. (Recommended)		and type.
	allkeys-lru : Evict keys by trying to remove the LRU keys first.		
	volatile-random : evict keys randomly, but only evict keys with an expire set.		
	allkeys-random : Evict keys randomly.		
	volatile-ttl : Evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first.		
	noeviction : Do not delete any keys and only return errors when the memory limit was reached.		
	volatile-lfu : Evict keys by trying to remove the less frequently used (LFU) keys first, but only among keys that have an expire set.		
	allkeys-lfu : Evict keys by trying to remove the LFU keys first.		
lua-time-limit	Maximum time allowed for executing a Lua script (in milliseconds).	100–5000	5,000

Parameter	Description	Value Range	Default Value
master-read- only	Sets the instance to be read-only. All write operations will fail. Proxy Cluster instances do not have this parameter.	yesno	no
maxclients	The maximum number of clients allowed to be concurrently connected to a DCS instance. Proxy Cluster instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
proto-max- bulk-len	Maximum size of a single element request (in bytes).	1,048,576–536,870,912	536,870,9 12
repl-backlog- size	The replication backlog size (bytes). The backlog is a buffer that accumulates replica data when replicas are disconnected from the master. When a replica reconnects, a partial synchronization is performed to synchronize the data that was missed while replicas were disconnected. Single-node instances do not have this parameter.	16,384–1,073,741,824	1,048,576
repl-backlog- ttl	The amount of time, in seconds, before the backlog buffer is released, starting from the last a replica was disconnected. The value 0 indicates that the backlog is never released. Single-node instances do not have this parameter.	0-604,800	3,600

Parameter	Description	Value Range	Default Value
repl-timeout	Replication timeout (in seconds). Single-node instances do	30–3,600	60
	not have this parameter.		
hash-max- ziplist-entries	Hashes are encoded using a memory efficient data structure when the number of entries in hashes is less than the value of this parameter.	1–10,000	512
hash-max- ziplist-value	Hashes are encoded using a memory efficient data structure when the biggest entry in hashes does not exceed the length threshold indicated by this parameter.	1–10,000	64
set-max- intset-entries	When a set is composed of just strings that happen to be integers in radix 10 in the range of 64 bit signed integers, sets are encoded using a memory efficient data structure.	1–10,000	512
zset-max- ziplist-entries	Sorted sets are encoded using a memory efficient data structure when the number of entries in sorted sets is less than the value of this parameter.	1–10,000	128
zset-max- ziplist-value	Sorted sets are encoded using a memory efficient data structure when the biggest entry in sorted sets does not exceed the length threshold indicated by this parameter.	1-10,000	64

Parameter	Description	Value Range	Default Value
latency- monitor- threshold	Threshold time in latency monitoring. Unit: millisecond.	0–86,400,000 ms	0
	Set to 0 : Latency monitoring is disabled.		
	Set to more than 0: All with at least this many milliseconds of latency will be logged.		
	By running the LATENCY command, you can perform operations related to latency monitoring, such as obtaining statistical data, and configuring and enabling latency monitoring.		
	Proxy Cluster instances do not have this parameter.		

Parameter	Description	Value Range	Default Value
notify- keyspace- events	Controls which keyspace events notifications are enabled for. If the value is an empty string, this function is disabled. A combination of different values can be used to enable notifications for multiple event types. Possible values:	See the parameter description.	Ex
	K : Keyspace events, published with the keyspace@ prefix.		
	E: Keyevent events, published with keyevent@ prefix		
	g : Generic commands (non-type specific) such as DEL, EXPIRE, and RENAME		
	\$: String commands		
	l: List commands		
	s: Set commands		
	h : Hash commands		
	z: Sorted set commands		
	x : Expired events (events generated every time a key expires)		
	e : Evicted events (events generated when a key is evicted for maxmemory)		
	A: an alias for "g\$lshzxe"		
	The parameter value must contain either K or E . A cannot be used together with any of the characters in "g\$lshzxe". For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis		
	will notify Pub/Sub clients about all events.		

Parameter	Description	Value Range	Default Value
	Proxy Cluster instances do not have this parameter.		
slowlog-log- slower-than	Redis records queries that exceed a specified execution time.	0–1,000,000	10,000
	slowlog-log-slower- than is the maximum time allowed, in microseconds, for command execution. If this threshold is exceeded, Redis will record the query.		
slowlog-max- len	The maximum allowed number of slow queries that can be logged. Slow query log consumes memory, but you can reclaim this memory by running the SLOWLOG RESET command.	0-1000	128
auto-kill- timeout-lua- process	yes: enabled no: disabled When this parameter is enabled, lua scripts are killed when their execution times out. However, scripts with write operations are not killed, but their nodes automatically restart (if persistence has been enabled for the instance) without saving the write operations. Single-node instances and DCS Redis 3.0 instances do not have this parameter.	 yes no 	no

D NOTE

- 1. The default values and value ranges of the **maxclients**, **reserved-memory-percent**, **client-output-buffer-slave-soft-limit**, and **client-output-buffer-slave-hard-limit** parameters are related to the instance specifications. Therefore, these parameters are not displayed in the parameter template.
- For more information about the parameters described in Table 10-1, visit https:// redis.io/topics/memory-optimization.

----End

10.2 Creating a Custom Parameter Template

You can create custom parameter templates for different cache engine versions and instance types based on service requirements.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Parameter Templates**.
- **Step 4** Click the **Default Templates** or **Custom Templates** tab to create a template based on a default template or an existing custom template.
 - If you select **Default Templates**, click **Customize** in the **Operation** column of the row containing the desired cache engine version.
 - If you select **Custom Templates**, click **Copy** in the **Operation** column in the row containing the desired custom template.
- Step 5 Specify Template Name and Description.

NOTE

The template name can contain 4 to 64 characters and must start with a letter or digit. Only letters, digits, hyphens (-), underscores (_), and periods (.) are allowed. The description can be empty.

Step 6 Select Modifiable parameters.

Currently, you can enter a keyword in the search box to search for a parameter by parameter name.

Step 7 In the row that contains the parameter to be modified, enter a value in the **Assigned Value** column.

Table 10-2 describes the parameters. In most cases, default values are retained.

Parameter	Description	Value Range	Default Value
timeout	The maximum amount of time (in seconds) a connection between a client and the DCS instance can be allowed to remain idle before the connection is terminated. A setting of 0 means that this function is disabled. Proxy Cluster instances do not have this parameter.	0-7200 seconds	0
appendfsync	Controls how often fsync() transfers cached data to the disk. Note that some OSs will perform a complete data transfer but some others only make a "best- effort" attempt. There are three settings: no: fsync() is never called. The OS will flush data when it is ready. This mode offers the highest performance. always: fsync() is called after every write to the AOF. This mode is very slow, but also very safe. everysec: fsync() is called once per second. This mode provides a compromise between safety and performance. Single-node instances do not have this parameter.	 no always everysec 	no

Table 10-2 DCS Redis instance configuration parameters

Parameter	Description	Value Range	Default Value
appendonly	Indicates whether to log each modification of the instance. By default, data is written to disks asynchronously in Redis. If this function is disabled, recently- generated data might be lost in the event of a power failure. Options: yes: enabled no: disabled Single-node instances do not have this parameter.	 yes no 	yes
client-output- buffer-limit- slave-soft- seconds	Number of seconds that the output buffer remains above client- output-buffer-slave- soft-limit before the client is disconnected. Single-node instances do not have this parameter.	0–60	60
client-output- buffer-slave- hard-limit	Hard limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the hard limit, the client is immediately disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
client-output- buffer-slave- soft-limit	Soft limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the soft limit and continuously remains above the limit for the time specified by the client-output-buffer- limit-slave-soft-seconds parameter, the client is disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.

Parameter	Description	Value Range	Default Value
maxmemory- policy	The deletion policy to apply when the maxmemory limit is reached. Options:	Depends on the instance version.	Depends on the instance version
	volatile-lru: Evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set. (Recommended)		and type.
	allkeys-lru : Evict keys by trying to remove the LRU keys first.		
	volatile-random : evict keys randomly, but only evict keys with an expire set.		
	allkeys-random : Evict keys randomly.		
	volatile-ttl : Evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first.		
	noeviction : Do not delete any keys and only return errors when the memory limit was reached.		
	volatile-lfu : Evict keys by trying to remove the less frequently used (LFU) keys first, but only among keys that have an expire set.		
	allkeys-lfu : Evict keys by trying to remove the LFU keys first.		
lua-time-limit	Maximum time allowed for executing a Lua script (in milliseconds).	100–5000	5,000

Parameter	Description	Value Range	Default Value
master-read- only	Sets the instance to be read-only. All write operations will fail. Proxy Cluster instances do not have this parameter.	yesno	no
maxclients	The maximum number of clients allowed to be concurrently connected to a DCS instance. Proxy Cluster instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
proto-max- bulk-len	Maximum size of a single element request (in bytes).	1,048,576–536,870,912	536,870,9 12
repl-backlog- size	The replication backlog size (bytes). The backlog is a buffer that accumulates replica data when replicas are disconnected from the master. When a replica reconnects, a partial synchronization is performed to synchronize the data that was missed while replicas were disconnected. Single-node instances do not have this parameter.	16,384–1,073,741,824	1,048,576
repl-backlog- ttl	The amount of time, in seconds, before the backlog buffer is released, starting from the last a replica was disconnected. The value 0 indicates that the backlog is never released. Single-node instances do not have this parameter.	0-604,800	3,600

Parameter	Description	Value Range	Default Value
repl-timeout	Replication timeout (in seconds). Single-node instances do not have this parameter.	30–3,600	60
hash-max- ziplist-entries	Hashes are encoded using a memory efficient data structure when the number of entries in hashes is less than the value of this parameter.	1–10,000	512
hash-max- ziplist-value	Hashes are encoded using a memory efficient data structure when the biggest entry in hashes does not exceed the length threshold indicated by this parameter.	1–10,000	64
set-max- intset-entries	When a set is composed of just strings that happen to be integers in radix 10 in the range of 64 bit signed integers, sets are encoded using a memory efficient data structure.	1–10,000	512
zset-max- ziplist-entries	Sorted sets are encoded using a memory efficient data structure when the number of entries in sorted sets is less than the value of this parameter.	1–10,000	128
zset-max- ziplist-value	Sorted sets are encoded using a memory efficient data structure when the biggest entry in sorted sets does not exceed the length threshold indicated by this parameter.	1-10,000	64

Parameter	Description	Value Range	Default Value
latency- monitor- threshold	Threshold time in latency monitoring. Unit: millisecond.	0–86,400,000 ms	0
	Set to 0 : Latency monitoring is disabled.		
	Set to more than 0: All with at least this many milliseconds of latency will be logged.		
	By running the LATENCY command, you can perform operations related to latency monitoring, such as obtaining statistical data, and configuring and enabling latency monitoring.		
	Proxy Cluster instances do not have this parameter.		

Parameter	Description	Value Range	Default Value
notify- keyspace- events	Controls which keyspace events notifications are enabled for. If the value is an empty string, this function is disabled. A combination of different values can be used to enable notifications for multiple event types. Possible values:	See the parameter description.	Ex
	K: Keyspace events, published with the keyspace@ prefix.		
	E: Keyevent events, published with keyevent@ prefix		
	g : Generic commands (non-type specific) such as DEL, EXPIRE, and RENAME		
	\$: String commands		
	l: List commands		
	s: Set commands		
	h : Hash commands		
	z : Sorted set commands		
	x : Expired events (events generated every time a key expires)		
	e : Evicted events (events generated when a key is evicted for maxmemory)		
	A: an alias for "g\$lshzxe"		
	The parameter value must contain either K or E . A cannot be used together with any of the characters in "g\$lshzxe". For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis will notify Pub/Sub		

Parameter	Description	Value Range	Default Value
	Proxy Cluster instances do not have this parameter.		
slowlog-log- slower-than	Redis records queries that exceed a specified execution time.	0–1,000,000	10,000
	slowlog-log-slower- than is the maximum time allowed, in microseconds, for command execution. If this threshold is exceeded, Redis will record the query.		
slowlog-max- len	The maximum allowed number of slow queries that can be logged. Slow query log consumes memory, but you can reclaim this memory by running the SLOWLOG RESET command.	0-1000	128
auto-kill- timeout-lua- process	yes: enabled no: disabled When this parameter is enabled, lua scripts are killed when their execution times out. However, scripts with write operations are not killed, but their nodes automatically restart (if persistence has been enabled for the instance) without saving the write operations. Single-node instances and DCS Redis 3.0 instances do not have this parameter.	 yes no 	no

D NOTE

- 1. The default values and value ranges of the **maxclients**, **reserved-memory-percent**, **client-output-buffer-slave-soft-limit**, and **client-output-buffer-slave-hard-limit** parameters are related to the instance specifications. Therefore, these parameters cannot be modified.
- 2. For more information about the parameters described in Table 10-2, visit https:// redis.io/topics/memory-optimization.
- 3. The **latency-monitor-threshold** parameter is usually used for fault location. After locating faults based on the latency information collected, change the value of **latency-monitor-threshold** to **0** to avoid unnecessary latency.
- 4. More about the notify-keyspace-events parameter:
 - The parameter setting must contain at least a K or E.
 - A is an alias for "g\$lshzxe" and cannot be used together with any of the characters in "g\$lshzxe".
 - For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis will notify Pub/Sub clients about all events.

Step 8 Click OK.

----End

10.3 Modifying a Custom Parameter Template

You can modify the name, description, and parameters of a custom parameter template based on service requirements.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Parameter Templates.
- Step 4 Choose the Custom Templates tab.
- **Step 5** You can modify a custom parameter template in either of the following ways:
 - Click Edit in the Operation column.
 - a. Change the name or modify the description of a template.
 - b. In the **Parameters** area, select **Modifiable parameters**. In the row that contains the parameter to be modified, enter a value in the **Assigned Value** column. **Table 10-3** describes the parameters. In most cases, default values are retained.
 - c. Click OK.
 - Click the name of a custom template. On the displayed page, modify parameters.
 - a. Select **Modifiable parameters**. Enter a keyword in the search box to search for a parameter by parameter name.
 - b. Click Modify.

- c. In the row that contains the parameter to be modified, enter a value in the **Assigned Value** column. **Table 10-3** describes the parameters. In most cases, default values are retained.
- d. Click Save.

Table 10-3 DCS Redis instance configuration parameters

Parameter	Description	Value Range	Default Value
timeout	The maximum amount of time (in seconds) a connection between a client and the DCS instance can be allowed to remain idle before the connection is terminated. A setting of 0 means that this function is disabled. Proxy Cluster instances do not have this parameter.	0–7200 seconds	0
appendfsync	Controls how often fsync() transfers cached data to the disk. Note that some OSs will perform a complete data transfer but some others only make a "best- effort" attempt. There are three settings: no: fsync() is never called. The OS will flush data when it is ready. This mode offers the highest performance. always: fsync() is called after every write to the AOF. This mode is very slow, but also very safe. everysec: fsync() is called once per second. This mode provides a compromise between safety and performance. Single-node instances do not have this parameter.	 no always everysec 	no

Parameter	Description	Value Range	Default Value
appendonly	Indicates whether to log each modification of the instance. By default, data is written to disks asynchronously in Redis. If this function is disabled, recently- generated data might be lost in the event of a power failure. Options: yes: enabled no: disabled Single-node instances do not have this parameter.	 yes no 	yes
client-output- buffer-limit- slave-soft- seconds	Number of seconds that the output buffer remains above client- output-buffer-slave- soft-limit before the client is disconnected. Single-node instances do not have this parameter.	0–60	60
client-output- buffer-slave- hard-limit	Hard limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the hard limit, the client is immediately disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
client-output- buffer-slave- soft-limit	Soft limit (in bytes) on the output buffer of replica clients. Once the output buffer exceeds the soft limit and continuously remains above the limit for the time specified by the client-output-buffer- limit-slave-soft-seconds parameter, the client is disconnected. Single-node instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.

Parameter	Description	Value Range	Default Value
maxmemory- policy	The deletion policy to apply when the maxmemory limit is reached. Options:	Depends on the instance version.	Depends on the instance version
	volatile-lru: Evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set. (Recommended)		and type.
	allkeys-lru : Evict keys by trying to remove the LRU keys first.		
	volatile-random : evict keys randomly, but only evict keys with an expire set.		
	allkeys-random : Evict keys randomly.		
	volatile-ttl : Evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first.		
	noeviction : Do not delete any keys and only return errors when the memory limit was reached.		
	volatile-lfu : Evict keys by trying to remove the less frequently used (LFU) keys first, but only among keys that have an expire set.		
	allkeys-lfu : Evict keys by trying to remove the LFU keys first.		
lua-time-limit	Maximum time allowed for executing a Lua script (in milliseconds).	100–5000	5,000

Parameter	Description	Value Range	Default Value
master-read- only	Sets the instance to be read-only. All write operations will fail. Proxy Cluster instances do not have this parameter.	yesno	no
maxclients	The maximum number of clients allowed to be concurrently connected to a DCS instance. Proxy Cluster instances do not have this parameter.	Depends on the instance type and specifications.	Depends on the instance type and specificat ions.
proto-max- bulk-len	Maximum size of a single element request (in bytes).	1,048,576–536,870,912	536,870,9 12
repl-backlog- size	The replication backlog size (bytes). The backlog is a buffer that accumulates replica data when replicas are disconnected from the master. When a replica reconnects, a partial synchronization is performed to synchronize the data that was missed while replicas were disconnected. Single-node instances do not have this parameter.	16,384–1,073,741,824	1,048,576
repl-backlog- ttl	The amount of time, in seconds, before the backlog buffer is released, starting from the last a replica was disconnected. The value 0 indicates that the backlog is never released. Single-node instances do not have this parameter.	0-604,800	3,600

Parameter	Description	Value Range	Default Value
repl-timeout	Replication timeout (in seconds). Single-node instances do	30–3,600	60
	not have this parameter.		
hash-max- ziplist-entries	Hashes are encoded using a memory efficient data structure when the number of entries in hashes is less than the value of this parameter.	1–10,000	512
hash-max- ziplist-value	Hashes are encoded using a memory efficient data structure when the biggest entry in hashes does not exceed the length threshold indicated by this parameter.	1–10,000	64
set-max- intset-entries	When a set is composed of just strings that happen to be integers in radix 10 in the range of 64 bit signed integers, sets are encoded using a memory efficient data structure.	1–10,000	512
zset-max- ziplist-entries	Sorted sets are encoded using a memory efficient data structure when the number of entries in sorted sets is less than the value of this parameter.	1–10,000	128
zset-max- ziplist-value	Sorted sets are encoded using a memory efficient data structure when the biggest entry in sorted sets does not exceed the length threshold indicated by this parameter.	1-10,000	64

Parameter	Description	Value Range	Default Value
latency- monitor- threshold	Threshold time in latency monitoring. Unit: millisecond.	0–86,400,000 ms	0
	Set to 0 : Latency monitoring is disabled.		
	Set to more than 0: All with at least this many milliseconds of latency will be logged.		
	By running the LATENCY command, you can perform operations related to latency monitoring, such as obtaining statistical data, and configuring and enabling latency monitoring.		
	Proxy Cluster instances do not have this parameter.		

Parameter	Description	Value Range	Default Value
notify- keyspace- events	Controls which keyspace events notifications are enabled for. If the value is an empty string, this function is disabled. A combination of different values can be used to enable notifications for multiple event types. Possible values:	See the parameter description.	Ex
	K : Keyspace events, published with the keyspace@ prefix.		
	E: Keyevent events, published with keyevent@ prefix		
	g : Generic commands (non-type specific) such as DEL, EXPIRE, and RENAME		
	\$: String commands		
	l: List commands		
	s: Set commands		
	h : Hash commands		
	z: Sorted set commands		
	x : Expired events (events generated every time a key expires)		
	e : Evicted events (events generated when a key is evicted for maxmemory)		
	A: an alias for "g\$lshzxe"		
	The parameter value must contain either K or E . A cannot be used together with any of the characters in "g\$lshzxe". For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis		
	will notify Pub/Sub clients about all events.		

Parameter	Description	Value Range	Default Value
	Proxy Cluster instances do not have this parameter.		
slowlog-log- slower-than	Redis records queries that exceed a specified execution time.	0–1,000,000	10,000
	slowlog-log-slower- than is the maximum time allowed, in microseconds, for command execution. If this threshold is exceeded, Redis will record the query.		
slowlog-max- len	The maximum allowed number of slow queries that can be logged. Slow query log consumes memory, but you can reclaim this memory by running the SLOWLOG RESET command.	0-1000	128
auto-kill- timeout-lua- process	yes: enabled no: disabled When this parameter is enabled, lua scripts are killed when their execution times out. However, scripts with write operations are not killed, but their nodes automatically restart (if persistence has been enabled for the instance) without saving the write operations. Single-node instances and DCS Redis 3.0 instances do not have this parameter.	 yes no 	no

NOTE

- 1. The default values and value ranges of the **maxclients**, **reserved-memory-percent**, **client-output-buffer-slave-soft-limit**, and **client-output-buffer-slave-hard-limit** parameters are related to the instance specifications. Therefore, these parameters cannot be modified.
- For more information about the parameters described in Table 10-3, visit https:// redis.io/topics/memory-optimization.
- 3. The **latency-monitor-threshold** parameter is usually used for fault location. After locating faults based on the latency information collected, change the value of **latency-monitor-threshold** to **0** to avoid unnecessary latency.
- 4. More about the **notify-keyspace-events** parameter:
 - The parameter setting must contain at least a K or E.
 - A is an alias for "g\$lshzxe" and cannot be used together with any of the characters in "g\$lshzxe".
 - For example, the value Kl means that Redis will notify Pub/Sub clients about keyspace events and list commands. The value AKE means Redis will notify Pub/Sub clients about all events.

----End

10.4 Deleting a Custom Parameter Template

This section describes how to delete a custom parameter template.

Procedure

- **Step 1** Log in to the DCS console.
- **Step 2** Click ¹ in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Parameter Templates**.
- Step 4 Choose the Custom Templates tab.
- Step 5 Click Delete in the Operation column.
- Step 6 Click Yes.

----End

11 Monitoring

11.1 DCS Metrics

Introduction

This section describes DCS metrics reported to Cloud Eye as well as their namespaces and dimensions. You can use the Cloud Eye console or call APIs to query the DCS metrics and alarms.

Instance Type	Instance Monitoring	Redis Server Monitoring	Proxy Monitoring
Single- node	Supported The monitoring on the instance dimension is conducted on the Redis Server.	N/A	N/A
Master/ standby	Supported The master node is monitored.	Supported The master and standby nodes is monitored.	N/A
Proxy Cluster	Supported The monitoring data is the aggregated master node data.	Supported Each shard is monitored.	Supported Each proxy is monitored.

Table 11-1 Monitoring dimensions for different instance types

Instance	Instance	Redis Server	Proxy Monitoring
Type	Monitoring	Monitoring	
Redis Cluster	Supported The monitoring data is the aggregated master node data.	Supported Each shard is monitored.	N/A

Namespace

SYS.DCS

DCS Redis 3.0 Instance Metrics

- The Monitored Object column lists instances that support the corresponding metrics.
- **Dimensions** lists the metric dimensions.

Table 11-2 DCS Redis 3.0 instance metrics

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
cpu_usage	CPU Usage	The monitored object's maximum CPU usage among multiple sampling values in a monitoring period Unit: %	0– 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
memory_us age	Memor y Usage	Memory consumed by the monitored object Unit: %	0– 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
net_in_thro ughput	Networ k Input Throug hput	Inbound throughput per second on a port Unit: byte/s	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
net_out_thr oughput	Networ k Output Throug hput	Outbound throughput per second on a port Unit: byte/s	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
node_status	Instanc e Node Status	Status of instance nodes. If the status is normal, the value is 0 . If the status is abnormal, the value is 1 .	-	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
connected_c lients	Connec ted Clients	Number of connected clients (excluding those from slave nodes)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
client_longe st_out_list	Client Longest Output List	Longest output list among current client connections	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
client_bigge st_in_buf	Client Biggest Input Buf	Maximum input data length among current client connections Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
blocked_clie nts	Blocked Clients	Number of clients suspended by block operations such as BLPOP, BRPOP, and BRPOPLPUSH	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
used_memo ry	Used Memor y	Number of bytes used by the Redis server Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_rss	Used Memor y RSS	Resident set size (RSS) memory that the Redis server has used, which is the memory that actually resides in the memory, including all stack and heap memory but not swapped-out memory Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_peak	Used Memor y Peak	Peak memory consumed by Redis since the Redis server last started Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_lua	Used Memor y Lua	Number of bytes used by the Lua engine Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
memory_fra g_ratio	Memor y Fragme ntation Ratio	Current memory fragmentation, which is the ratio between used_memory_rss/ used_memory.	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
total_conne ctions_recei ved	New Connec tions	Number of connections received during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
total_comm ands_proces sed	Comma nds Process ed	Number of commands processed during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_ops	Ops per Second	Number of commands processed per second	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
total_net_in put_bytes	Networ k Input Bytes	Number of bytes received during the monitoring period Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
total_net_o utput_bytes	Networ k Output Bytes	Number of bytes sent during the monitoring period Unit: byte	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_input_kb ps	Input Flow	Instantaneous input traffic Unit: kbit/s	≥ 0 kbits/s	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_output_k bps	Output Flow	Instantaneous output traffic Unit: kbit/s	≥ 0 kbits/s	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
rejected_co nnections	Rejecte d Connec tions	Number of connections that have exceeded maxclients and been rejected during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
expired_key s	Expired Keys	Number of keys that have expired and been deleted during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
evicted_key s	Evicted Keys	Number of keys that have been evicted and deleted during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keyspace_hi ts	Keyspac e Hits	Number of successful lookups of keys in the main dictionary during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keyspace_m isses	Keyspac e Misses	Number of failed lookups of keys in the main dictionary during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
pubsub_cha nnels	PubSub Channe ls	Number of Pub/Sub channels	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
pubsub_pat terns	PubSub Pattern s	Number of Pub/Sub patterns	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
keyspace_hi ts_perc	Hit Rate	Ratio of the number of Redis cache hits to the number of lookups. Calculation: keyspace_hits/ (keyspace_hits + keyspace_misses) Unit: %	0– 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
command_ max_delay	Maxim um Comma nd Latency	Maximum latency of commands Unit: ms	≥ 0 ms	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
auth_errors	Authent ication Failures	Number of failed authentications	≥ 0	Single-node or master/standby DCS Redis instance	1 min ute
is_slow_log_ exist	Slow Query Logs	Existence of slow query logs in the instance NOTE Slow queries caused by the MIGRATE, SLAVEOF, CONFIG, BGSAVE, and BGREWRITEAOF commands are not counted.	 1: yes 0: no 	Single-node or master/standby DCS Redis instance	1 min ute
keys	Keys	Number of keys in Redis	≥ 0	Single-node or master/standby DCS Redis instance	1 min ute

DCS Redis 4.0/5.0/6.0 Instance Metrics

NOTE

- The **Monitored Object** column lists instances that support the corresponding metrics.
- **Dimensions** lists the metric dimensions.

Table 11-3 DCS Redis 4.0/5.0/6.0 instance metrics

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
cpu_usage	CPU Usage	The monitored object's maximum CPU usage among multiple sampling values in a monitoring period Unit: %	0– 100%	Single-node or master/ standby DCS Redis instance	1 min ute
command_ max_delay	Maximu m Comma nd Latency	Maximum latency of commands Unit: ms	≥ 0 ms	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
total_connec tions_receive d	New Connect ions	Number of connections received during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
is_slow_log_ exist	Slow Query Logs	Existence of slow query logs in the instance NOTE Slow queries caused by the MIGRATE, SLAVEOF, CONFIG, BGSAVE, and BGREWRITEAOF commands are not counted.	 1: yes 0: no 	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
memory_us age	Memor y Usage	Memory consumed by the monitored object Unit: %	0- 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
expires	Keys With an Expirati on	Number of keys with an expiration in Redis	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keyspace_hit s_perc	Hit Rate	Ratio of the number of Redis cache hits to the number of lookups. Calculation: keyspace_hits/ (keyspace_hits + keyspace_misses) Unit: %	0– 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry	Used Memor y	Number of bytes used by the Redis server Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_dataset	Used Memor y Dataset	Dataset memory that the Redis server has used Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_dataset_p erc	Used Memor y Dataset Ratio	Percentage of dataset memory that server has used Unit: %	0- 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
-----------------------	--------------------------	---	----------------	---	---
used_memo ry_rss	Used Memor y RSS	Resident set size (RSS) memory that the Redis server has used, which is the memory that actually resides in the memory, including all stack and heap memory but not swapped-out memory Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_ops	Ops per Second	Number of commands processed per second	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keyspace_mi sses	Keyspac e Misses	Number of failed lookups of keys in the main dictionary during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keys	Keys	Number of keys in Redis	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
rx_controlle d	Flow Control Times	Number of flow control times during the monitoring period	>=0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
bandwidth_ usage	Bandwi dth Usage	Percentage of the maximum bandwidth limit used (the average value of the sum of input and output flows) Unit: %	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
connections _usage	Connect ion Usage	Percentage of the current number of connections to the maximum allowed number of connections Unit: %	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
Instance Node Status	Instanc e Node Status	Status of instance nodes. If the status is normal, the value is 0 . If the status is abnormal, the value is 1 .	-	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
command_ max_rt	Maximu m Latency	Maximum delay from when the node receives commands to when it responds Unit: μs	≥ 0	Single-node DCS Redis instance	1 min ute
command_a vg_rt	Average Latency	Average delay from when the node receives commands to when it responds Unit: μs	≥ 0	Single-node DCS Redis instance	1 min ute
cpu_avg_usa ge	Average CPU Usage	Current average usage of CPU resources Unit: %	≥ 0	Single-node or master/ standby DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
blocked_clie nts	Blocked Clients	Number of clients suspended by block operations	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
connected_c lients	Connect ed Clients	Number of connected clients (excluding those from slave nodes)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
del	DEL	Number of DEL commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
evicted_keys	Evicted Keys	Number of keys that have been evicted and deleted during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
expire	EXPIRE	Number of EXPIRE commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
expired_keys	Expired Keys	Number of keys that have expired and been deleted during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
get	GET	Number of GET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
hdel	HDEL	Number of HDEL commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
hget	HGET	Number of HGET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
hmget	HMGET	Number of HMGET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
hmset	HMSET	Number of HMSET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
hset	HSET	Number of HSET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_input_kb ps	Input Flow	Instantaneous input traffic Unit: KB/s	≥ 0 KB/s	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
instantaneo us_output_k bps	Output Flow	Instantaneous output traffic Unit: KB/s	≥ 0 KB/s	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
memory_fra g_ratio	Memor y Fragme ntation Ratio	Ratio between Used Memory RSS and Used Memory	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
mget	MGET	Number of MGET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
mset	MSET	Number of MSET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
pubsub_cha nnels	PubSub Channe ls	Number of Pub/Sub channels	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
pubsub_patt erns	PubSub Pattern s	Number of Pub/Sub patterns	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
set	SET	Number of SET commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_lua	Used Memor y Lua	Number of bytes used by the Lua engine Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
used_memo ry_peak	Used Memor y Peak	Peak memory consumed by Redis since the Redis server last started Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
sadd	SADD	Number of SADD commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
smembers	SMEMB ERS	Number of SMEMBERS commands processed per second Unit: count/s	0– 500,000	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
keyspace_mi sses	Keyspac e Misses	Number of failed lookups of keys in the main dictionary during the monitoring period	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_dataset	Used Memor y Dataset	Dataset memory that the Redis server has used Unit: KB, MB, or byte (configurable on the console)	≥ 0	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute
used_memo ry_dataset_p erc	Used Memor y Dataset Ratio	Percentage of dataset memory that server has used Unit: %	0– 100%	Single-node, master/ standby, or cluster DCS Redis instance	1 min ute

Redis Server Metrics of DCS Redis Instances

NOTE

- For Proxy Cluster instances, the monitoring covers Redis Servers and proxies. For Redis Cluster instances, the monitoring covers Redis Servers.
- The **Monitored Object** column lists instances that support the corresponding metrics.
- **Dimensions** lists the metric dimensions.

Table 11-4 Redis Server metrics

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
cpu_usage	CPU Usage	The monitored object's maximum CPU usage among multiple sampling values in a monitoring period Unit: %	0– 100%	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
memory_us age	Memory Usage	Memory consumed by the monitored object Unit: %	0– 100%	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
connected_c lients	Connect ed Clients	Number of connected clients (excluding those from slave nodes)	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
client_longe st_out_list	Client Longest Output List	Longest output list among current client connections	≥ 0	Redis Server of a master/ standby or cluster DCS Redis 4.0 instance	1 min ute
client_bigge st_in_buf	Client Biggest Input Buf	Maximum input data length among current client connections Unit: byte	≥ 0	Redis Server of a master/ standby or cluster DCS Redis 4.0 instance	1 min ute
blocked_clie nts	Blocked Clients	Number of clients suspended by block operations such as BLPOP, BRPOP, and BRPOPLPUSH	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
used_memo ry	Used Memory	Number of bytes used by the Redis server Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
used_memo ry_rss	Used Memory RSS	RSS memory that the Redis server has used, which including all stack and heap memory but not swapped- out memory Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
used_memo ry_peak	Used Memory Peak	Peak memory consumed by Redis since the Redis server last started Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
used_memo ry_lua	Used Memory Lua	Number of bytes used by the Lua engine Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
memory_fra g_ratio	Memory Fragmen tation Ratio	Current memory fragmentation, which is the ratio between used_memory_rss/ used_memory.	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
total_conne ctions_recei ved	New Connecti ons	Number of connections received during the monitoring period	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
total_comm ands_proces sed	Comma nds Processe d	Number of commands processed during the monitoring period	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
instantaneo us_ops	Ops per Second	Number of commands processed per second	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
total_net_in put_bytes	Network Input Bytes	Number of bytes received during the monitoring period Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
total_net_ou tput_bytes	Network Output Bytes	Number of bytes sent during the monitoring period Unit: byte	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
instantaneo us_input_kb ps	Input Flow	Instantaneous input traffic Unit: KB/s	≥ 0 KB/s	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
instantaneo us_output_k bps	Output Flow	Instantaneous output traffic Unit: KB/s	≥ 0 KB/s	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
rejected_con nections	Rejected Connecti ons	Number of connections that have exceeded maxclients and been rejected during the monitoring period	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
expired_key s	Expired Keys	Number of keys that have expired and been deleted during the monitoring period	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
evicted_keys	Evicted Keys	Number of keys that have been evicted and deleted during the monitoring period	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
pubsub_cha nnels	PubSub Channel s	Number of Pub/Sub channels	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
pubsub_patt erns	PubSub Patterns	Number of Pub/Sub patterns	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
keyspace_hi ts_perc	Hit Rate	Ratio of the number of Redis cache hits to the number of lookups. Calculation: keyspace_hits/ (keyspace_hits + keyspace_misses) Unit: %	0– 100%	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
command_ max_delay	Maximu m Comma nd Latency	Maximum latency of commands Unit: ms	≥ 0 ms	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
is_slow_log_ exist	Slow Query Logs	Existence of slow query logs in the node NOTE Slow queries caused by the MIGRATE, SLAVEOF, CONFIG, BGSAVE, and BGREWRITEAOF commands are not counted.	 1: yes 0: no 	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
keys	Keys	Number of keys in Redis	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
sadd	SADD	Number of SADD commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
smembers	SMEMB ERS	Number of SMEMBERS commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
ms_repl_offs et	Replicati on Gap	Data synchronization gap between the master and the replica	-	Replica of a cluster DCS Redis 4.0 or 5.0 instance	1 min ute
del	DEL	Number of DEL commands processed per second Unit: count/s	0- 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
expire	EXPIRE	Number of EXPIRE commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
get	GET	Number of GET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
hdel	HDEL	Number of HDEL commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
hget	HGET	Number of HGET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra w Dat a)
hmget	HMGET	Number of HMGET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
hmset	HMSET	Number of HMSET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
hset	HSET	Number of HSET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
mget	MGET	Number of MGET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object	Mo nit ori ng Per iod (Ra W Dat a)
mset	MSET	Number of MSET commands processed per second Unit: count/s	0– 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
set	SET	Number of SET commands processed per second Unit: count/s	0- 500,000	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
rx_controlle d	Flow Control Times	Number of flow control times during the monitoring period Unit: count	≥ 0	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute
bandwidth_ usage	Bandwid th Usage	Percentage of the used bandwidth to the maximum bandwidth limit	0- 200%	Redis Server of a cluster DCS instance Redis Server of a master/ standby DCS Redis 4.0/5.0/6.0 instance	1 min ute

Proxy Metrics

D NOTE

- The Monitored Object column lists instances that support the corresponding metrics.
- **Dimensions** lists the metric dimensions.

Table 11-5 Proxy metrics of Proxy Cluster DCS Redis 3.0 instances

Metric ID	Metric	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra w Dat a)
cpu_usage	CPU Usage	The monitored object's maximum CPU usage among multiple sampling values in a monitoring period Unit: %	0-100%	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
memory_us age	Memory Usage	Memory consumed by the monitored object Unit: %	0–100%	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
p_connecte d_clients	Connecte d Clients	Number of connected clients	≥ 0	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
max_rxpck_ per_sec	Max. NIC Data Packet Receive Rate	Maximum number of data packets received by the proxy NIC per second during the monitoring period Unit: packages/ second	0- 10,000, 000	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra w Dat a)
max_txpck_ per_sec	Max. NIC Data Packet Transmit Rate	Maximum number of data packets transmitted by the proxy NIC per second during the monitoring period Unit: packages/ second	0- 10,000, 000	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
max_rxkB_p er_sec	Maximu m Inbound Bandwidt h	Largest volume of data received by the proxy NIC per second Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
max_txkB_p er_sec	Maximu m Outboun d Bandwidt h	Largest volume of data transmitted by the proxy NIC per second Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
avg_rxpck_p er_sec	Average NIC Data Packet Receive Rate	Average number of data packets received by the proxy NIC per second during the monitoring period Unit: packages/ second	0- 10,000, 000	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
avg_txpck_p er_sec	Average NIC Data Packet Transmit Rate	Average number of data packets transmitted by the proxy NIC per second during the monitoring period Unit: packages/ second	0– 10,000, 000	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute

Metric ID	Metric	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra w Dat a)
avg_rxkB_p er_sec	Average Inbound Bandwidt h	Average volume of data received by the proxy NIC per second Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute
avg_txkB_p er_sec	Average Outboun d Bandwidt h	Average volume of data transmitted by the proxy NIC per second Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 3.0 instance	1 min ute

Table 11-6 Proxy metrics of Proxy Cluster DCS Redis 4.0 or 5.0 instances

Metric ID	Metric	Metric Description	Value Range	Monitored Object	Monit oring Period (Raw Data)
node_status	Instance Node Status	Indication of whether the proxy is normal.	 0: Nor mal 1: Abn orm al 	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
cpu_usage	CPU Usage	The monitored object's maximum CPU usage among multiple sampling values in a monitoring period Unit: %	0-100%	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute

Metric ID	Metric	Metric Description	Value Range	Monitored Object	Monit oring Period (Raw Data)
cpu_avg_us age	Average CPU Usage	The monitored object's average CPU usage of multiple sampling values in a monitoring period Unit: %	0–100%	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
memory_us age	Memory Usage	Memory consumed by the monitored object Unit: %	0–100%	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
connected_c lients	Connecte d Clients	Number of connected clients	≥ 0	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
instantaneo us_ops	Ops per Second	Number of commands processed per second	≥ 0	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
instantaneo us_input_kb ps	Input Flow	Instantaneous input traffic Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
instantaneo us_output_k bps	Output Flow	Instantaneous output traffic Unit: KB/s	≥ 0 KB/s	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
total_net_in put_bytes	Network Input Bytes	Number of bytes received during the monitoring period Unit: byte	≥ 0	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute

Metric ID	Metric	Metric Description	Value Range	Monitored Object	Monit oring Period (Raw Data)
total_net_o utput_bytes	Network Output Bytes	Number of bytes sent during the monitoring period Unit: byte	≥ 0	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
connections _usage	Connecti on Usage	Percentage of the current number of connections to the maximum allowed number of connections Unit: %	0-100%	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
command_ max_rt	Maximu m Latency	Maximum delay from when the node receives commands to when it responds Unit: us	>=0us	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute
command_a vg_rt	Average Latency	Average delay from when the node receives commands to when it responds Unit: us	>=0us	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance	1 minute

Dimensions

Кеу	Value
dcs_instance_id	DCS Redis instance
dcs_cluster_redis_node	Redis Server
dcs_cluster_proxy_node	Proxy in a Proxy Cluster DCS Redis 3.0 instance
dcs_cluster_proxy2_node	Proxy in a Proxy Cluster DCS Redis 4.0 or 5.0 instance

11.2 Common Metrics

This section describes common Redis metrics.

Table 11-7 Common metrics

Metric	Description
CPU Usage	This metric indicates the maximum value in each measurement period (minute-level: every minute; second-level: every 5 seconds).
	 For a single-node or master/standby instance, you can view the CPU usage of the instance.
	 For a Proxy Cluster instance, you can view the CPU usage of the Redis Servers and the proxies.
	 For a Redis Cluster instance, you can only view the CPU usage of the Redis Servers.
Memory Usage	This metric measures the memory usage in each measurement period (minute-level: every minute; second-level: every 5 seconds).
	 For a single-node or master/standby instance, you can view the memory usage of the instance.
	 For a Proxy Cluster instance, you can view the memory usage of the instance and the proxies.
	 For a Redis Cluster instance, you can only view the memory usage of the Redis Servers.
	NOTICE The memory usage does not include the usage of reserved memory.
Connected Clients	This metric indicates the number of instantaneous connected clients, that is, the number of concurrent connections.
	This metric does not include the number of connections to the standby nodes of master/standby or cluster instances.
	For details about the maximum allowed number of connections, see the "Max. Connections" column of different instance types listed in DCS Instance Specifications.
Ops per Second	This metric indicates the number of operations processed per second.
	For details about the maximum allowed number of operations per second, see the "Reference Performance (QPS)" column of different instance types listed in DCS Instance Specifications.
Input Flow	This metric indicates the instantaneous input traffic.
	 The monitoring data on the instance level shows the aggregated input traffic of all nodes.
	 The monitoring data on the node level shows the input traffic of the current node.

Metric	Description
Output Flow	 This metric indicates the instantaneous output traffic. The monitoring data on the instance level shows the aggregated output traffic of all nodes. The monitoring data on the node level shows the output traffic of the current node.
Bandwidth Usage	This metric indicates the percentage of the used bandwidth to the maximum bandwidth limit. Bandwidth usage = (Input flow + Output flow)/(2 x Maximum bandwidth) x 100%
Commands Processed	This metric indicates the number of commands processed during the monitoring period. The default monitoring period is 1 minute. The monitoring period of this metric is different from that of the Ops per Second metric The Ops per Second metric measures the instantaneous number of commands processed. The Commands Processed metric measures the total number of commands processed during the monitoring period.
Flow Control Times	This metric indicates the number of times that the maximum allowed bandwidth is exceeded during the monitoring period. For details about the maximum allowed bandwidth, see the "Maximum/Assured Bandwidth" column of different instance types listed in DCS Instance Specifications.
Slow Queries	This metric indicates whether slow queries exist on the instance. For details about the cause of a slow query, see Viewing Redis Slow Queries .

11.3 Viewing DCS Monitoring Metrics

You can view DCS instance metrics on the **Performance Monitoring** page.

Procedure

Step 1 Log in to the DCS console.

- **Step 2** Click ^(Q) in the upper left corner and select a region and a project.
- **Step 3** In the navigation pane, choose **Cache Manager**.
- **Step 4** Click the desired instance.
- **Step 5** Choose **Performance Monitoring**. All monitoring metrics of the instance are displayed.

D NOTE

You can also click **View Metric** in the **Operation** column on the **Cache Manager** page. You will be redirected to the Cloud Eye console. The metrics displayed on the Cloud Eye console are the same as those displayed on the **Performance Monitoring** page of the DCS console.

----End

11.4 Configuring Alarm Rules for Critical Metrics

This section describes the alarm rules of some metrics and how to configure the rules. In actual scenarios, configure alarm rules for metrics by referring to the following alarm policies.

Alarm Policies for DCS Redis Instances

Metric	Normal Range	Alarm Policy	Appro ach Upper Limit	Handling Suggestion
CPU Usage	0-100	Alarm threshold: 70 Number of consecutiv e periods: 2 Alarm severity: Major	No	Consider capacity expansion based on the service analysis. The CPU capacity of a single- node or master/standby instance cannot be expanded. If you need larger capacity, use a cluster instance instead. This metric is available only for single-node, master/standby, and Proxy Cluster instances. For Redis Cluster instances, this metric is available only on the Redis Server level. You can view the metric on the Redis Server tab page on the Performance Monitoring page of the instance.

Table	11-8	DCS	Redis	instance	metrics	to	configure	alarm	rules	for

Metric	Normal Range	Alarm Policy	Appro ach Upper Limit	Handling Suggestion
Average CPU Usage	0~100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Major	Zo	Consider capacity expansion based on the service analysis. The CPU capacity of a single- node or master/standby instance cannot be expanded. If you need larger capacity, use a cluster instance instead. This metric is available only for single-node, Proxy Cluster, and master/standby instances. For Redis Cluster instances, this metric is available only on the Redis Server level. You can view the metric on the Redis Server tab page on the Performance Monitoring page of the instance.
Memory Usage	0-100	Alarm threshold: 70 Number of consecutiv e periods: 2 Alarm severity: Major	No	Expand the capacity of the instance.
Connect ed Clients	0-10,000	Alarm threshold: 8000 Number of consecutiv e periods: 2 Alarm severity: Major	No	Optimize the connection pool in the service code to prevent the number of connections from exceeding the maximum limit. For single-node and master/ standby instances, the maximum number of connections allowed is 10,000. You can adjust the threshold based on service requirements. Configure this alarm policy on the instance level for single-node and master/standby instances. For cluster instances, configure this alarm policy on the Redis Server and Proxy level.

Metric	Normal Range	Alarm Policy	Appro ach Upper Limit	Handling Suggestion
New Connecti ons (Count/ min)	0-10,000	Alarm threshold: 10,000 Number of consecutiv e periods: 2 Alarm severity: Minor	-	Check whether connect is used and whether the client connection is abnormal. Use persistent connections ("pconnect" in Redis terminology) to ensure performance. Configure this alarm policy on the instance level for single-node and master/standby instances. For cluster instances, configure this alarm policy on the Redis Server and Proxy level.
Input Flow	> 0	Alarm threshold: 80% of the assured bandwidth Number of consecutiv e periods: 2 Alarm severity: Major	Yes	Consider capacity expansion based on the service analysis and bandwidth limit. Configure this alarm only for single-node and master/standby DCS Redis 3.0 instances and set the alarm threshold to 80% of the assured bandwidth of DCS Redis 3.0 instances.
Output Flow	> 0	Alarm threshold: 80% of the assured bandwidth Number of consecutiv e periods: 2 Alarm severity: Major	Yes	Consider capacity expansion based on the service analysis and bandwidth limit. Configure this alarm only for single-node and master/standby DCS Redis 3.0 instances and set the alarm threshold to 80% of the assured bandwidth of DCS Redis 3.0 instances.

Alarm Policies for Redis Server Nodes of Cluster DCS Redis Instances

Metric	Value Range	Alarm Policy	Approac h Upper Limit	Handling Suggestion
CPU Usage	0-100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Major	No	Check the service for traffic surge. Check whether the CPU usage is evenly distributed to Redis Server nodes. If the CPU usage is high on multiple nodes, consider capacity expansion. Expanding the capacity of a cluster instance will scale out nodes to share the CPU pressure. If the CPU usage is high on a single node, check whether hot keys exist. If yes, optimize the
				service code to eliminate hot keys.
Average CPU Usage	0-100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Major	No	Consider capacity expansion based on the service analysis. The CPU capacity of a single- node or master/standby instance cannot be expanded. If you need larger capacity, use a cluster instance instead. This metric is available only for single-node, master/standby, and Proxy Cluster instances. For Redis Cluster instances, this metric is available only on the Redis Server level. You can view the metric on the Redis Server tab page on the Performance Monitoring page of the instance.

Table 11-9 Redis server metrics to configure alarm policies for

Metric	Value Range	Alarm Policy	Approac h Upper Limit	Handling Suggestion
Memory Usage	0-100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Major	No	Check the service for traffic surge. Check whether the memory usage is evenly distributed to Redis Server nodes. If the memory usage is high on multiple nodes, consider capacity expansion. If the memory usage is high on a single node, check whether big keys exist. If yes, optimize the service code to eliminate big keys.
Connect ed Clients	0–10,000	Alarm threshold: > 8000 Number of consecutiv e periods: 2 Alarm severity: Major	No	Check whether the number of connections is within the appropriate range. If yes, adjust the alarm threshold.
New Connecti ons	≥ 0	Alarm threshold: > 10,000 Number of consecutiv e periods: 2 Alarm severity: Minor	-	Check whether connect is used. To ensure performance, use persistent connections ("pconnect" in Redis terminology).
Slow Query Logs	0-1	Alarm threshold: > 0 Number of consecutiv e periods: 1 Alarm severity: Major	-	Use the slow query function on the console to analyze slow commands.

Metric	Value Range	Alarm Policy	Approac h Upper Limit	Handling Suggestion
Bandwid th Usage	0-200%	Alarm threshold: > 90% Number of consecutiv e periods: 2 Alarm severity: Major	Yes	Check whether the bandwidth usage increase comes from read services or write services based on the input and output flow. If the bandwidth usage of a single node is high, check whether big keys exist. Even if the bandwidth usage exceeds 100%, flow control may not necessarily be performed. The actual flow control is subject to the Flow Control Times metric. Even if the bandwidth usage is below 100%, flow control may be performed. The real-time bandwidth usage is reported once in every reporting period. The flow control times metric is reported every second. During a reporting period, the traffic may surge within seconds and then fall back. By the time the bandwidth usage is reported, it has restored to the normal level.
Flow Control Times	≥ 0	Alarm threshold: > 0 Number of consecutiv e periods: 1 Alarm severity: Critical	Yes	Consider capacity expansion based on the specification limits, input flow, and output flow. NOTE This metric is supported only by Redis 4.0 and later and not by Redis 3.0.

Alarm Policies for Proxy Nodes of Cluster DCS Redis Instances

Metric	Value Range	Alarm Policy	Approac h Upper Limit	Handling Suggestion
CPU Usage	0-100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Critical	Yes	Consider capacity expansion, which will add Proxies.
Memory Usage	0-100%	Alarm threshold: > 70% Number of consecutiv e periods: 2 Alarm severity: Critical	Yes	Consider capacity expansion, which will add Proxies.
Connect ed Clients	0-30,000	Alarm threshold: > 20,000 Number of consecutiv e periods: 2 Alarm severity: Major	No	Optimize the connection pool in the service code to prevent the number of connections from exceeding the maximum limit.

Table 11-10	Proxy	metrics to	configure	alarm	policies	for
-------------	-------	------------	-----------	-------	----------	-----

Configuring an Alarm Rule for a Resource Group

Cloud Eye allows you to add DCS instances, Redis Server nodes, and proxy nodes to resource groups and manage instances and alarm rules by group to simplify O&M. For more information about resource groups, see the *Cloud Eye User Guide*.

- **Step 1** Create a resource group.
 - 1. Log in to the Cloud Eye console. In the navigation pane, choose **Resource Groups** and then click **Create Resource Group** in the upper right corner.

Enter a group name and add Redis Server nodes to the resource group.
 You can add Redis Server nodes of different instances to the same resource group.

Figure 11-1 Creating	а	resource	group
----------------------	---	----------	-------

C Create Resource Group					
Name	redis-server				
Add Resources	Manually				
Select resource		All resources ▼ You have selected 2 resources of the current type. (A maximum of S Name □ dc-r40e	Name		
	NAT Gateway (0) Relational Database Service (0)	Select All			
	Elastic Load Balance (0)	(master)10.2.1.82	ec816ebcb3000in1167704421a07053c5		
	+ Distributed Message Service (0) + Document Database Service (0)	V (replica)10.2.1.235	6709437a2030c6641a2897afdad5a68b		
	Distributed Cache Service (2) DCS Memcached Instances				
	DCS Redis Instances (0)				
	Redis Servers (2)				
	Proxies (0)				
	Proxies (4.0 and later) (0)				
	+ Cloud Search Service (0)				
	 GaussDB NoSQL (0) 				

- 3. Click Create.
- Step 2 In the navigation pane of the Cloud Eye console, choose Alarm Management > Alarm Rules and then click Create Alarm Rule to set alarm information for the resource group.

Create a CPU usage alarm rule for all Redis Server nodes in the resource group, as shown in the following figure.

< Create Alarm Rule	9	
* Name	alam redis-opu	
Description		
	0226	
* Resource Type	Destributed Cache Service •	
* Dimension	DCS Reds Instances *	
* Monitoring Scope	Al resources Resource groups Specific resources If you choose Resource groups, alterns will be triggered as resources under that group reach their predieted thresholds.	
* Group	reds-server C Circelle Resource Debug Vew Resour	
* Method	Associate template Use existing template Configure manually	
* Alarm Policy		
Metric Name	Alarm Policy	Alarm Seve Operation
CPU Usage	▼ Raw d ▼ 2 consecuti ▼ 2≈ ▼ 70 % One day ▼	Major 👻
Add Alarm Policy You	u can add 49 more.	

Figure 11-2 Creating an alarm rule for a resource group

Step 3 Click Create.

----End

Procedure (for a Specific Resource)

In the following example, an alarm rule is set for the CPU Usage metric.

Step 1 Log in to the DCS console.

- **Step 2** Click $^{\textcircled{O}}$ in the upper left corner and select a region and a project.
- Step 3 In the navigation pane, choose Cache Manager.
- Step 4 In the same row as the DCS instance whose metrics you want to view, choose More > View Metric.

Figure 11-3 Viewing instance metrics

Step 5 Locate the **CPU Usage** metric. Hover over the metric and click to create an alarm rule for the metric.

The **Create Alarm Rule** page is displayed.

- **Step 6** Specify the alarm rule details.
 - 1. Specify the alarm policy and alarm severity.

For example, the alarm policy shown in the following figure indicates that an alarm will be triggered if the CPU usage exceeds the threshold for two consecutive periods.

Figure 11-4 Setting the alarm content

* Method	Associate template	Use existing template	Configure manually					
* Alarm Policy								
Metric Name	Alarm Polic	Y .				,	Alarm Seve	Operation
CPU Usage	▼ Raw d	•	2 consecuti • >= •	80 % One day 💌			Major 🔻	
(+) Add Alarm Policy You ca	n add 49 more.							

- 2. Set the alarm notification configurations. If you enable **Alarm Notification**, set the validity period, notification object, and trigger condition.
- 3. Click **Create**.

NOTE

- For more information about creating alarm rules, see the *Cloud Eye User Guide* > *Using the Alarm Function* > *Creating Alarm Rules*.
- For details about how to modify or disable the created alarms, see "Using the Alarm Function" > "Alarm Rule Management" in the *Cloud Eye User Guide*.

----End

12 Auditing

12.1 Operations That Can Be Recorded by CTS

With CTS, you can query, audit, and review operations performed on cloud resources. Traces include the operation requests sent using the management console or open APIs as well as the results of these requests.

The following lists the DCS operations that can be recorded by CTS.

Operation	Resource Type	Trace Name	
Creating an instance	Redis	createDCSInstance	
Submitting an instance creation request	Redis	submitCreateDCSInstanceRequest	
Deleting multiple instances	Redis	batchDeleteDCSInstance	
Deleting an instance	Redis	deleteDCSInstance	
Modifying instance information	Redis	modifyDCSInstanceInfo	
Modifying instance configuratio ns	Redis	modifyDCSInstanceConfig	

Table 12-1 DCS operations that can be recorded by CTS

Operation	Resource Type	Trace Name
Changing instance password	Redis	modifyDCSInstancePassword
Restarting an instance	Redis	restartDCSInstance
Submitting an instance restarting request	Redis	submitRestartDCSInstanceRequest
Starting an instance	Redis	startDCSInstance
Submitting an instance starting request	Redis	submitStartDCSInstanceRequest
Clearing instance data	Redis	flushDCSInstance
Restarting instances in batches	Redis	batchRestartDCSInstance
Submitting a request to restart instances in batches	Redis	submitBatchRestartDCSInstanceRequest
Starting multiple instances	Redis	batchStartDCSInstance
Submitting a request to start instances in batches	Redis	submitBatchStartDCSInstanceRequest
Restoring instance data	Redis	restoreDCSInstance
Submitting a request to restore instance data	Redis	submitRestoreDCSInstanceRequest

Operation	Resource Type	Trace Name
Backing up instance data	Redis	backupDCSInstance
Submitting a request to back up instance data	Redis	submitBackupDCSInstanceRequest
Deleting instance backup files	Redis	deleteInstanceBackupFile
Deleting background tasks	Redis	deleteDCSInstanceJobRecord
Modifying instance specification s	Redis	modifySpecification
Submitting a request to modify instance specification s	Redis	submitModifySpecificationRequest
Creating an instance subscription order	Redis	createInstanceOrder
Updating an enterprise project ID	Redis	updateEnterpriseProjectId
Switching between master and standby nodes	Redis	masterStandbySwitchover
Disabling public access	Redis	disablePublicNetworkAccess
Enabling public access	Redis	enablePublicNetworkAccess
Operation	Resource Type	Trace Name
---	------------------	-------------------------------
Resetting instance password	Redis	resetDCSInstancePassword
Submitting a request to clear instance data	Redis	submitFlushDCSInstanceRequest
Accessing Web CLI	Redis	webCliLogin
Running commands in Web CLI	Redis	webCliCommand
Exiting Web CLI	Redis	webCliLogout
Migrating offline data	Redis	offlineMigrate

12.2 Viewing Traces on the CTS Console

After CTS is enabled, the tracker starts recording operations on cloud resources. Operation records for the last seven days can be viewed on the CTS console. This section describes how to query operation records of the last seven days on the CTS console.

Procedure

Step 1 Log in to the management console.

Step 2 Click O in the upper left corner of the management console and select a region and a project.

NOTE

Select the same region as your application service.

- Step 3 Click Service List and choose Management & Deployment > Cloud Trace Service.
- **Step 4** In the navigation pane, click **Trace List**.
- **Step 5** Specify the filters used for querying traces. The following filters are available:
 - Trace Type, Trace Source, Resource Type, and Search By Select an option from the drop-down list. Select DCS from the Trace Source drop-down list.

When you select **Trace name**, you also need to select a specific trace name. When you select **Resource ID**, you also need to select a specific resource ID. When you select **Resource name**, you also need to select a specific resource name.

- **Operator**: Select a specific operator (a user other than tenant).
- **Trace Status**: Available options include **All trace status**, **normal**, **warning**, and **incident**. You can select only one of them.
- Start time and end time: You can specify the time period in which to query traces.
- **Step 6** Click \checkmark on the left of a trace to expand its details, as shown in Figure 12-1.

Figure 12-1 Expanding trace details

Trace Name	Resource Type	Trace Source	Resource ID (2)	Resource Name (2)	Trace Status ⊘	Operator @	Operation Time	Operation
∧ createDCSInstanceS	Redis	DCS	3980d1c8-c2f6-42cb-b8	1000	🤝 normal	(and)	04/16/2018 11:14:59 GMT+08:00	View Trace
Trace ID 586d3349-412 Trace Type ConsoleAction	14-11e8-897d-2c790f6a458 1	15		Source Genera	IP Address 04/16/20	018 11:14:59 GMT+08	.00	

Step 7 Click **View Trace** in the **Operation** column. In the dialog box shown in **Figure 12-2**, the trace structure details are displayed.

Figure 12-2 Viewing traces

----End

13 Data Migration Guide

13.1 Overview

Due to variations of Redis application environments and scenarios, migration solutions must be detailed to address actual requirements. The time required for data migration is related to the data volume, the location of source Redis data, and the network bandwidth. Record and evaluate the duration during the rehearsal phase.

When migrating data, analyze the cache commands (reference: **Command Compatibility**) used by your service systems and verify the commands one by one during the rehearsal phase. If necessary, contact technical support.

NOTICE

- Data migration is an important and stringent task requiring high accuracy and timeliness. It varies depending on specific services and operation environments.
- Cases provided in this document are for reference only. Consider your service scenarios and requirements during actual migration.
- Some commands in this document contain instance passwords, which will be recorded in the operating system (OS). Ensure that the passwords are not disclosed and clear operation records in a timely manner.

Migration	Source	Target: DCS			
Mode		Single-Node and Master/Standby	Proxy Cluster	Redis Cluster	
Importing	AOF file	\checkmark	\checkmark	\checkmark	
backup files	RDB file	\checkmark	\checkmark	\checkmark	

Table 13-1 DCS data migration modes

Migrating data online	DCS for Redis: single-node or master/standby	\checkmark	\checkmark	\checkmark
	DCS for Redis: Proxy Cluster NOTE Proxy Cluster DCS Redis 3.0 instances cannot be used as the source, while Proxy Cluster DCS Redis 4.0 or 5.0 instances can.	√	√	√
	DCS for Redis: Redis Cluster	\checkmark	\checkmark	\checkmark
	Self-hosted single-node or master/standby Redis	\checkmark	\checkmark	\checkmark
	Self-hosted proxy-based cluster Redis	\checkmark	\checkmark	\checkmark
	Self-hosted Redis Cluster	\checkmark	\checkmark	\checkmark
	Other Redis: single-node or master/standby	×	×	×
	Other Redis: proxy-based cluster	×	×	×
	Other Redis: Redis Cluster	×	×	×

D NOTE

- DCS for Redis refers to Redis instances provided by DCS
- Self-hosted Redis refers to self-hosted Redis on the cloud, from other cloud vendors, or in on-premises data centers.
- Other cloud Redis refers to Redis services provided by other cloud vendors.
- \checkmark : Supported. ×: Not supported.
- You can migrate data online in full or incrementally from **other cloud Redis** to **DCS for Redis** if they are connected and the **SYNC** and **PSYNC** commands can be run on the source Redis. However, some instances provided by other cloud vendors may fail to be migrated online. In this case, migrate data through backup import or use other migration schemes. For details, see **Migration Tools and Schemes**.

13.2 Migration Process

Figure 13-1 Migration flowchart

Evaluation

Collect the following information about the cached data to be migrated (based on **Information to be collected for the migration**):

- Number of instances
- Number of databases (DBs) configured for each instance
- Number of keys in each DB
- DBs used for your services
- Space occupied by each instance
- Redis version
- Redis instance configurations (single-node, master/standby, or cluster)
- Mapping relationships between your services and instances

Plan the following information about DCS instances based on the collected information:

- Number of instances to be applied for
- Specifications and type (single-node, master/standby, or cluster) of each instance
- Virtual Private Clouds (VPCs), security groups, and subnets, and security groups, to which the instances and services belong

redis-cli -h \${redis_address} -p \${port}

• Run the following command to query the data distribution and obtain the IDs of DBs with data and the number of keys in each DB:

info keyspace

Query and record the number of keys in each DB for subsequent migration verification.

• Run the following command to query the space occupied by the instance data. Check whether the available disk space of Elastic Cloud Servers (ECSs) is sufficient for transition, and whether the instance specifications and remaining available memory are sufficient.

info memory

The occupied space can be obtained from the value of **used_memory_human**.

Preparation

After completing the evaluation, prepare the following items:

1. Mobile storage devices

These devices are used to copy and transfer data in case of network disconnection (in scenarios with data centers of enterprises).

2. Network resources

Create VPCs and subnets based on service planning.

3. Server resources

Apply for ECSs to bear Redis clients. The ECSs are used to export or import cached data.

Recommended ECS specifications are 8 vCPUs | 16 GB or higher.

4. DCS instances

Create DCS instances based on the migration planning. If the number of instances exceeds the default quota, submit a service ticket or contact technical support.

5. Related tools

Install the FTP tool and Redis migration tools.

6. Information to be collected

Collect the contact information of people involved in the migration, server addresses, login credentials, cache instance information, and DB information.

7. Overall migration plan

Formulate the overall migration plan, including the personnel arrangement, rehearsal, migration, verification, service switchover, and rollback solutions. Break down each solution into executable operations and set milestones to

mark the end of tasks.

Rehearsal

The rehearsal phase aims to:

- 1. Verify the feasibility of the migration tools and migration process.
- 2. Discover problems that may occur during migration and make effective improvements.

- 3. Evaluate the time required for migration.
- 4. Optimize the migration steps and verify the feasibility of concurrent implementation of some tasks to improve migration efficiency.

Backup

Before migration, back up related data, including but not limited to cached data and Redis configuration files, in case of emergency.

Migration

After conducting one or two rounds of migration rehearsal and solving problems found in the rehearsal, start data migration.

Break down the migration process into executable steps with specific start and end confirmation actions.

Data Verification

Check the following items:

- The key distribution of each DB is consistent with the original or expected distribution.
- Main keys.
- Expiration time of keys.
- Whether instances can be normally backed up and restored.

Service Switchover

- 1. After the data migration and verification, use the new instances for your services.
- 2. If DB IDs are changed, modify the ID configurations for your services.
- 3. If your services are migrated from data centers or cloud platforms provided by other vendors to this cloud as a whole, services and cached data can be migrated concurrently.

Service Verification

After the service switchover:

- 1. Verify the connectivity between your service applications and DCS instances.
- 2. Verify whether cached data can be normally added, deleted, modified, and queried.
- 3. If possible, perform pressure tests to ensure that the performance satisfies the peak service pressure.

Rollback

If your services are unavailable after the data migration because unexpected problems occur and cannot be solved in the short term, roll back your services.

Since source Redis data still exists, you only need to roll back your services and use the source Redis instances again.

After the rollback, you can continue to restart from the rehearsal or even preparation phase to solve the problems.

Information to be collected for the migration

The following table lists the information to be collected in the evaluation and preparation phases.

Migration Source	Item	Description
Source Redis	Source Redis IP address	-
(List the informatio n about all	Redis instance password (if any)	-
to be migrated.)	Total data volume	Obtained from the value of used_memory_human by running the info memory command.
		Used to evaluate whether the migration solution, DCS instance specifications, and available disk space of ECSs meet requirements, and to estimate the time required for migration (service interruption duration).
	IDs of DBs with data	Obtained by running the info keyspace command.
		Used to check whether the migration involves multiple DBs and non-AOF files. Some open- source tools can export and import data of only one DB at a time.
		For DCS instances, the single-node and master/ standby types provide 256 DBs (DB 0 to DB 255), and the cluster type provides only one DB by default.
	Number of keys in each DB	Used to verify the data integrity after migration.
	Data type	The Cloud Data Migration (CDM) service supports two data formats: hash and string. If the source data contains data in other formats such as list and set, use a third-party migration tool.

Table 13-2 Information to be collected for the migration

Migration Source	ltem	Description
ECS If a large number of instances are to be	EIP	Select ECSs that can communicate with DCS instances for data import to ensure network stability. Configure high-specification bandwidth to improve data transmission efficiency.
migrated, prepare multiple ECSs for concurrent	Login credentials (username and password)	-
migration.	CPU and memory	Some migration tools support concurrent import through multiple threads. High- specification ECSs help improve import efficiency.
	Available disk space	Sufficient available disk space needs to be reserved on the ECSs to store compressed files and decompressed cached data files. Note: To improve data transmission efficiency, compress large-size data files before transmitting them to ECSs.
DCS instances (Select	Instance connection address	-
appropriate instance specificatio	Instance connection port	-
ns and quantities	Instance password	-
the	Instance type	-
number of source Redis instances and data volume.)	Instance specifications and available memory	-
Network configurati ons	VPC	Plan VPCs in advance to ensure that your service applications and DCS instances are in same VPCs.
	Subnet	-

Migration Source	Item	Description
	Whitelist or security group	DCS Redis 3.0, 4.0, 5.0, and 6.0 professional edition instances are deployed in different modes. Therefore, the access control methods vary. You can control access to your DCS instances by setting security groups or whitelists. For details, see Security Group Configurations or Managing IP Address Whitelist.
		Other configurations.

13.3 Migration Tools and Schemes

Migration Tools

Table	13-3	Comparing	Redis	migration	tools
-------	------	-----------	-------	-----------	-------

Tool/ Command/ Service	Feature	Description
DCS console	Supports online migration (in full or incrementally) and backup migration (by importing backup files) with intuitive operations.	 Backup migration is suitable when the source and target Redis instances are not connected, and the source Redis instance does not support the SYNC and PSYNC commands. To migrate data, import your backup files to OBS, and DCS will read data from OBS and migrate the data to the target DCS Redis instance. Online migration is suitable when the source Redis instance supports the SYNC and PSYNC commands. Data in the source Redis instance can be migrated in full or incrementally to the target instance.

Tool/ Command/ Service	Feature	Description
redis-cli	• The Redis command line interface (CLI), which can be used to export data as an RDB file or import the AOF file (that is, all DBs) of an instance.	-
	 An AOF file is large file containing a full set of data change commands. 	
Rump	Supports online migration between DBs	Rump does not support incremental migration.
	of an instance or between DBs of different instances.	Stop services before migrating data. Otherwise, keys might be lost. For details, see Online Migration with Rump .
redis-shake	An open-source tool that supports both online and offline migration.	redis-shake is suitable for migrating Redis Cluster data.
Self- developed migration script	Flexible and can be adjusted as required.	-

Migration Schemes

NOTE

Self-hosted Redis refers to self-hosted Redis on this service, in another cloud, or in onpremises data centers.

Scenario	Tool	Use Case	Description
From self- hosted Redis to DCS	 DCS console If the network between your self-hosted Redis instance and the DCS Redis instance is connected, follow to the instructions in Online Migration of Self-Hosted Redis. If the network between your 		-
		 If the network between your self-hosted Redis instance and the DCS Redis instance is not connected, follow to the instructions in Backup Migration of Self-Hosted Redis. 	
	redis-cli	Self-Hosted Redis Migration with redis-cli (AOF)	-
		Self-Hosted Redis Migration with redis-cli (RDB)	-
	redis-shake	Self-Hosted Redis Cluster Migration with redis-shake	-
Between DCS instances	DCS console	 Migrate data from an earlier-version DCS Redis instance to a later-version DCS Redis instance to a DCS Redis 3.0 instance to a DCS Redis 4.0 or 5.0 instance. If the network between the source and target DCS Redis instances is connected, follow to the instructions in Online Migration Between DCS Redis Instances. If the network between the source and target DCS Redis Instances. If the network between the source and target DCS Redis Instances. If the network between the source and target DCS Redis Instances. If the network between the source and target DCS Redis instances is not connected, follow to the instructions in Backup Migration Between Regions or Redis Versions. 	Attempts to migrate data from a later- version Redis instance to an earlier-version Redis instance are not recommended because they will fail due to data compatibility issues between different Redis versions.

 Table 13-4 Migration schemes

Scenario	Tool	Use Case	Description
		Migrate Redis data between regions. For details, see Backup Migration Between Regions or Redis Versions.	The SYNC and PSYNC commands are disabled by default for DCS Redis instances. These commands are enabled for online migration within a region, and remain disabled for online migration between regions. Therefore, you can only use backup migration when migrating DCS Redis instance data between regions.
		 Migrate Redis data from one account to another. For details, see Backup Migration Between Regions or Redis Versions. If the DCS Redis instances of the two accounts are connected, you can also follow the instructions in Online Migration Between DCS Redis Instances. 	-
From another cloud to DCS	DCS console	 If the SYNC and PSYNC commands are not disabled for the Redis service provided by another cloud, follow the instructions in Online Migration from Another Cloud. If the SYNC and PSYNC commands are disabled for the Redis service provided by another cloud, follow the instructions in Backup Migration from Another Cloud. 	If online migration is required, contact the O&M personnel of another cloud to enable the SYNC and PSYNC commands.

Scenario	Tool	Use Case	Description
	Rump	Online Migration with Rump	-
	redis-shake	Offline Migration of Redis Cluster from Another Cloud with redis-shake	-
		Online Full Migration of Redis from Another Cloud with redis-shake	-
From DCS to self- hosted Redis	DCS console	Migrating Data from DCS to Self-Hosted Redis	You can migrate data online from a DCS Redis instance to your self-hosted Redis by using the DCS console.

13.4 Migrating Data from Self-Hosted Redis to DCS

13.4.1 Online Migration of Self-Hosted Redis

Application Scenarios

If the source and target instances are interconnected and the **SYNC** and **PSYNC** commands are supported by the source instance, data can be migrated online in full or incrementally from the source to the target.

- If the **SYNC** and **PSYNC** commands are disabled on the source Redis instance, enable them before performing online migration. Otherwise, the migration fails. If you use a DCS Redis instance for online migration, the **SYNC** command is automatically enabled.
- You cannot use public networks for online migration.
- During online migration, you are advised to set **repl-timeout** on the source instance to 300s and **client-output-buffer-limit** to 20% of the maximum memory of the instance.
- The source must be Redis 3.0 or later.

Impacts on Services

During online migration, data is essentially synchronized in full to a new replica. Therefore, perform online migration during low-demand hours.

Prerequisites

- Before migrating data, read through **Migration Tools and Schemes** to learn about the DCS data migration function and select an appropriate target instance.
- By default, a Proxy Cluster instance has only one database (DB0). Before you
 migrate data from a multi-DB single-node or master/standby instance to a
 Proxy Cluster instance, check whether any data exists on databases other than
 DB0. If yes, enable multi-DB for the Proxy Cluster instance by referring to
 Enabling Multi-DB.
- By default, a Redis Cluster instance has only one DB (DB0). Before you migrate data from a multi-DB single-node or master/standby instance to a Redis Cluster instance, check whether any data exists on databases other than DB0. To ensure that the migration succeeds, move all data to DB0 by referring to **Online Migration with Rump**.

Step 1: Obtain the Source Redis Address

Obtain the IP address/domain name and port number of the source Redis instance.

Step 2: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see Clearing DCS Instance Data.

If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

Step 3: Check the Network

Step 1 Check whether the source Redis instance, the target Redis instance, and the migration task are configured with the same VPC.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 2.

Step 2 Check whether the VPCs configured for the source Redis instance, the target Redis instance, and the migration task are connected to ensure that the VM resource of the migration task can access the source and target Redis instances.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 3.

- **Step 3** Perform the following operations to establish the network.
 - If the source and target Redis instances are in the same DCS region, create a VPC peering connection by referring to "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.
 - If the source and target Redis instances are on different clouds, create a connection by referring to the *Direct Connect User Guide*.

----End

Step 4: Create an Online Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- **Step 3** Click **Create Online Migration Task**.
- **Step 4** Enter the task name and description.
- **Step 5** Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

NOTE

- The online migration task uses a tenant IP address (**Migration ECS** displayed on the **Basic Information** page of the task.) If a whitelist is configured for the source or target instance, add the migration IP address to the whitelist or disable the whitelist.
- To allow the VM used by the migration task to access the source and target instances, set an outbound rule for the task's security group to allow traffic through the IP addresses and ports of the source and target instances. By default, all outbound traffic is allowed.

```
----End
```

Step 5: Configure the Online Migration Task

- **Step 1** On the **Online Migration** tab page, click **Configure** in the row containing the online migration task you just created.
- **Step 2** Select a migration type.

Supported migration types are **Full** and **Full + Incremental**, which are described in **Table 13-5**.

Migration Type	Description			
Full	Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source instance data updated during the migration will not be migrated to the target instance.			
Full + incremental	Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source and target instances.			
	Once the migration starts, it remains Migrating until you click Stop in the Operation column. After the migration is stopped, data in the source instance will not be lost, but data will not be written to the target instance. When the transmission network is stable, the delay of incremental migration is within seconds. The actual delay depends on the transmission quality of the network link.			

 Table 13-5 Migration type description

Figure 13-2 Selecting the migration type

* Migration Type	• Full Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source Redis data updated during the migration will not be migrated to the target instance.
	Full + Incremental Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source Redis and target Redis.

Step 3 Configure source Redis and target Redis.

- 1. **Source Redis Type**: Select **Redis in the cloud** or **Self-hosted Redis** as required.
 - Redis in the cloud: a DCS Redis instance that is in the same VPC as the migration task
 - Self-hosted Redis: self-hosted Redis on this service, in another cloud, or in on-premises data centers. If you select this option, enter Redis addresses.
- 2. If the instance is password-protected, you can click **Test Connection** to check whether the instance password is correct and whether the network is connected.
- Step 4 For Target Redis Instance, select the DCS Redis instance prepared in Step 2: Prepare the Target DCS Redis Instance.

If the instance is password-protected, you can click **Test Connection** to check whether the instance password meets the requirements.

Step 5 Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

D NOTE

- Once incremental migration starts, it remains **Migrating** until you click **Stop**.
- To stop a migration task, select the check box on the left of the migration task and click **Stop** above the instance list.

If the migration fails, click the migration task and check the log on the **Migration Logs** page.

----End

Verifying the Migration

After the migration is complete, use redis-cli to connect the source and target Redis instances to check data integrity.

- 1. Connect to the source Redis and the target Redis.
- 2. Run the info keyspace command to check the values of keys and expires.

3. Calculate the differences between the values of **keys** and **expires** of the source Redis and the target Redis. If the differences are the same, the data is complete and the migration is successful.

During full migration, source Redis data updated during the migration will not be migrated to the target instance.

13.4.2 Backup Migration of Self-Hosted Redis

Application Scenarios

Use the DCS console to migrate Redis data from Redis of another cloud or self-hosted Redis to DCS for Redis.

Simply download the source Redis data and then upload the data to an OBS bucket in the same region as the target DCS Redis instance. After you have created a migration task on the DCS console, DCS will read data from the OBS bucket and data will be migrated to the target instance.

.aof, .rdb, .zip, and .tar.gz files can be uploaded to OBS buckets. You can directly upload .aof and .rdb files or compress them into .zip or .tar.gz files before uploading.

Prerequisites

- The OBS bucket must be in the same region as the target DCS Redis instance.
- The data files to be uploaded must be in the .aof, .rdb, .zip, or .tar.gz format.
- To migrate data from a single-node or master/standby Redis instance of another cloud, create a backup task and download the backup file.
- To migrate data from a cluster Redis instance of another cloud, download all backup files, upload all of them to the OBS bucket, and select all of them for the migration. Each backup file contains data for a shard of the instance.

Step 1: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see **Clearing DCS Instance Data**.

Step 2: Create an OBS Bucket and Upload Backup Files

- **Step 1** Create an OBS bucket.
 - 1. Log in to the OBS Console and click **Create Bucket**.
 - 2. Select a region.
 - The OBS bucket must be in the same region as the target DCS Redis instance.
 - Specify Bucket Name.
 The bucket name must meet the naming rules specified on the console.
 - 4. Set Storage Class to Standard, Warm or Cold.

- 5. Set **Bucket Policy** to **Private**, **Public Read**, or **Public Read and Write**.
- 6. Configure default encryption.
- 7. Click Create Now.
- Step 2 Upload the backup data files to the OBS bucket by using OBS Browser+.

If the backup file to be uploaded does not exceed 5 GB, upload the file using the OBS console by referring to step **Step 3**.

If the backup file to be uploaded is larger than 5 GB, perform the following steps to upload the file using OBS Browser+.

1. Download OBS Browser+.

For details, see section "Downloading OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

2. Install OBS Browser+.

For details, see section "Installing OBS Browser+" in *Object Storage Service* (*OBS) Tools Guide* (*OBS Browser+*) > "Getting Started".

3. Log in to OBS Browser+.

For details, see section "Logging In to OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

- 4. Create a bucket.
- 5. Upload backup data.
- **Step 3** On the OBS console, upload the backup data files to the OBS bucket.

Perform the following steps if the backup file size does not exceed 5 GB:

- 1. In the bucket list, click the name of the created bucket.
- 2. In the navigation pane, choose **Objects**.
- 3. On the **Objects** tab page, click **Upload Object**.
- 4. Upload the objects.

To upload objects, drag files or folders to the **Upload Object** area or click **add file**. A maximum of 100 files can be uploaded at a time. The total size cannot exceed 5 GB.

Figure 13-3 Uploading an object

Upload Objec	t How to Upload a	File Greater than 5 G	B?					
Object Permission	Private	Public Read	Public	Read and Write				
Storage Class	Standard	Warm	Cold					
	Optimized for frequ	uently accessed (multi	iple times per	month) data such a	s small and esse	ential files that	require low latency.	
	The default storage more	e class is the same as t	that of the bu	icket. You can chang	e the storage cli	ass according to) your actual needs.	Learn
Upload Object	Note: If the bucket the existing file/fol	is not versioning-enal der.The file name canr	bled, uploadir 10t contain sp	ng a file/folder with t becial characters / or	:he name that a \	lready exists in	the bucket will repla	ace
				OBS				
		(A maximum of 10	Drag files or 0 files can be	r folders here to uplo uploaded at a time.	ad. Or add file The total size c	annot exceed 5	GB.)	
Encryption	Encrypts the file for KMS encryptio	r secure storage. The e n	encryption sta	itus of the encrypted	file cannot be (changed.		
			Upload	Cancel				

- 5. (Optional) Select **KMS encryption** to encrypt the file you want to upload.
- 6. Click Upload.
- ----End

Step 3: Create a Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- Step 3 Click Create Backup Import Task.
- **Step 4** Enter the task name and description.
- **Step 5** In the **Source Redis** area, select **OBS Bucket** for **Data Source** and then select the OBS bucket to which you have uploaded backup files.

In the **Backup Files** table, the files you have uploaded are displayed.

NOTE

You can upload files in the .aof, .rdb, .zip, or .tar.gz format.

Figure 13-4 Specifying the backup file information

Source Redis				
* Data Source	OBS bucket	Redis		
* OBS Bucket	05041fffa40025702f6dc00	9cc6f8f33-hilens-s 🔻	C View Bucket	
* Backup Files	To import data from multip	le backup files, you can cre	eate multiple migration tasks and run them at a time.	
	Name	Size		
	tes ns.zip			9.46 KB

Step 6 Select the backup files whose data is to be migrated.

Step 7 Select the target Redis instance prepared in Step 1: Prepare the Target DCS Redis Instance. If the target Redis instance has a password, enter the password and test the connection to check whether the password is correct.

Step 8 Click Next.

Step 9 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

----End

13.4.3 Self-Hosted Redis Migration with redis-cli (AOF)

Introduction

redis-cli is the command line tool of Redis, which can be used after you install the Redis server.

Run the following command to download Redis:

wget http://download.redis.io/releases/redis-5.0.8.tar.gz

This section describes how to use redis-cli to migrate a data from a self-hosted Redis instance to a DCS instance.

Step 1: Generating an AOF File

NOTICE

- Before data migration, suspend your services so that data changes newly generated will not be lost during the migration.
- Migrate data during off-peak hours.

Run the following command to enable cache persistence and obtain an AOF persistence file:

redis-cli -h *{source_redis_address}* -p 6379 -a *{password}* config set appendonly yes

If the size of the AOF file does not change after you have enabled persistence, the AOF file contains full cached data.

NOTE

- To find out the path for storing the AOF file, use redis-cli to access the Redis instance, and run the **config get dir** command. Unless otherwise specified, the file is named as **appendonly.aof** by default.
- To disable synchronization after the AOF file is generated, use redis-cli to log in to the Redis instance and run the **config set appendonly no** command.

Step 2: Uploading the AOF file to ECS

- 1. To save the transmission time, compress the AOF file before transmission.
- 2. Upload the compressed file to ECS using an appropriate mode (for example, SFTP mode).

D NOTE

Ensure that the ECS has sufficient disk space for data file decompression, and can communicate with the DCS instance. Generally, the ECS and DCS instance are configured to belong to the same VPC and subnet, and the configured security group rules do not restrict access ports. For details about how to configure a security group, see **Security Group Configurations**.

Step 3: Importing Data

redis-cli -h *{dcs_instance_address}* -p *6379* -a *{password}* --pipe < appendonly.aof

Step 4: Verifying Migration

After the data is imported successfully, access the DCS instance and run the **info** command to check whether the data has been successfully imported as required.

If the data import fails, analyze the cause, modify the data import statement, run the **flushall** or **flushdb** command to clear the cached data in the instance, and import the data again.

Efficiency of Data Export and Import

An AOF file can be generated quickly. It applies to scenarios where you can access the Redis server and modify the configurations, such as scenarios with self-built Redis servers.

It takes 4s to 10s to import 1 million data records (20 bytes per data record) in a VPC.

13.4.4 Self-Hosted Redis Migration with redis-cli (RDB)

Introduction

redis-cli is the command line tool of Redis, which can be used after you install the Redis server.

redis-cli supports data export as an RDB file. If your Redis service does not support AOF file export, use redis-cli to obtain an RDB file. Then, use another tool (such as redis-shake) to import the file to a DCS instance.

Operations described in this section are performed on the Linux OS.

Run the following command to download Redis. redis-cli can be used after installation and compilation.

wget http://download.redis.io/releases/redis-5.0.8.tar.gz

NOTICE

The source Redis instance must support the **SYNC** command, which is required when exporting the RDB file using redis-cli.

The **SYNC** command is not supported by DCS Reds 4.0/5.0/6.0 instances and cannot be used to export RDB files. To back up master/standby instance data, use the backup and restoration function provided by the DCS console.

Step 1: Preparation for Data Export

For master/standby or cluster DCS instances, there is a delay in writing data into an RDB file based on the delay policies configured in the **redis.conf** file. Therefore, before data export, learn the RDB policy configurations of the Redis instance to be migrated, suspend your service systems, and then write the required number of test keys into the Redis instance. This ensures that the RDB file is newly generated.

For the Redis service provided by a third-party cloud platform, you can contact its technical support to learn data writing policy configurations of an RDB file.

For example, the default RDB policy configurations in the **redis.conf** file are as follows:

save 900 1 //Writes changed data into an RDB file if there is any data change within 900s. save 300 10 //Writes changed data into an RDB file if there are more than 10 data changes within 300s. save 60 10000 //Writes changed data into an RDB file if there are more than 10,000 data changes within 60s.

Based on the preceding policy configurations, after stopping your service systems from writing data into the Redis instances, you can manually write test data to trigger the policies, so that all service data can be synchronized to the RDB file.

You can delete the test data after data import.

NOTE

If there is any DB not used by your service systems, you can write test data into the DB, and run the **flushdb** command to clear the DB after importing data into DCS.

Step 2: Exporting an RDB File

NOTICE

- 1. Migrate data during off-peak hours.
- 2. When exporting Redis Cluster data, individually export the data of each node in the cluster, and then import the data node by node.

Run the following command to export the RDB file:

redis-cli -h {source_redis_address} -p 6379 -a {password} --rdb {output.rdb}

If "Transfer finished with success." is displayed after the command is executed, the file is exported successfully.

Step 3: Uploading the RDB File to ECS

- 1. To save the transmission time, compress the RDB file before transmission.
- 2. Upload the compressed file to ECS using an appropriate mode (for example, SFTP mode).

NOTE

Ensure that the ECS has sufficient disk space for data file decompression, and can communicate with the DCS instance. Generally, the ECS and DCS instance are configured to belong to the same VPC and subnet, and the configured security group rules do not restrict access ports. For details about how to configure a security group, see **Security Group Configurations**.

Step 4: Importing Data

Use redis-shake to import data.

Step 5: Verifying Migration

After the data is imported successfully, access the DCS instance and run the **info** command to check whether the data has been successfully imported as required.

If the data import fails, analyze the cause, modify the data import statement, run the **flushall** or **flushdb** command to clear the cached data in the instance, and import the data again.

Efficiency of Data Export and Import

Compared with master/standby instances, single-node instances without data persistence configured require a longer time for export of an RDB file, because the RDB file is temporarily generated.

It takes 4s to 10s to import 1 million data records (20 bytes per data record) in a VPC.

13.4.5 Self-Hosted Redis Cluster Migration with redis-shake

redis-shake is an open-source tool for migrating data online or offline (by importing backup files) between Redis Clusters. Data can be migrated to DCS Redis Cluster instances seamlessly because DCS Redis Cluster inherits the native Redis Cluster design.

The following describes how to use redis-shake to migrate data to a DCS Redis Cluster instance.

Migrating Data Online

You can migrate data online from a self-hosted Redis Cluster to a DCS Redis Cluster instance as long as the two clusters are directly connected or connected through a transit server.

Data in Redis Clusters of another cloud cannot be migrated online because the **SYNC** and **PSYNC** commands are disabled by some vendors.

1. Create a Redis Cluster instance on the DCS console.

The memory of this instance cannot be smaller than that of the source Redis.

2. Prepare a cloud server and install redis-shake.

redis-shake must be able to access both the source and target Redis. Bound an EIP to the cloud server.

You can use ECS and configure the same VPC, subnet, and security group for the ECS and the DCS instance. If the source Redis is deployed on cloud servers of another cloud, allow public access to the servers.

Download and decompress the release version of redis-shake. (The following uses v2.1.2 as an example. You can also use **other redis-shake versions**.)

[root@ecs-p			4-ce	entos redi	issha	ake]# 11	
total 16972	2							
-rw-rr	1	1320024	users	2749	Jun	24	16:15	ChangeLog
-rwxr-xr-x	1	1320024	users	14225	Jun	24	16:14	hypervisor
-rwxr-xr-x	1	1320024	users	13000971	Jun	24	16:14	redis-shake
-rw-rr	1	1320024	users	8875	Jun	24	16:15	redis-shake.conf
-rw-rr	1	root	root	4326892	Jun	24	16:17	redis file.tar.g
-rwxr-xr-x	1	1320024	users	458	Jun	24	16:14	start.sh
-rwyr-yr-y	1	1320024	lisers	374	Jun	24	16.14	stop sh

3. Locate the masters of the source and target Redis Clusters and obtain the IP addresses of the masters.

Online data migration must be performed node by node. Run the following command to query the IP addresses and port numbers of all nodes in both the source and target Redis Clusters.

redis-cli -h *{redis_address}* -p *{redis_port}* -a *{redis_password}* cluster nodes

In the command output similar to the following, obtain the IP addresses and ports of all masters.

[root@ecs54-centos ~]# redi	s-cli -h 192.168.0.140 -p 6379 -a ████₽3 cluster nodes
fb75f0743af4695a3d241ff7790b2f508e4985ff	192.168.0.140:6379@16379 myself,master - 0 1562144170000 3 connected
d112bae791b2bbd9602fe32963536b8a0db9eb79	192.168.0.61:6379@16379 master - 0 1562144171524 1 connected 0-5460
73e2f8fe196166f9ad1283361867d24c136413f0	192.168.0.194:6379@16379 master - 0 1562144170000 2 connected 5461-1
40d72299fde6045de0f79ee4b97910b505acbc6a	192.168.0.231:6379@16379 slave 73e2f8fe196166f9ad1283361867d24c13641
be6c07faa64d724323e0d7cedc3f38346dcbd212	192.168.0.80:6379@16379 slave fb75f0743af4695a3d241ff7790b2f508e4985
c16b9acaeed7dd0721f129596cd43bd499c0e396	192.168.0.169:6379@16379 slave d112bae791b2bbd9602fe32963536b8a0db9e

NOTE

After Redis is installed, it runs with redis-cli. To install Redis on CentOS, run the **yum install redis** command.

4. Edit the redis-shake configuration file.

Edit the **redis-shake.conf** file by providing the following information about all the masters of both the source and the target:

source.type = cluster
If there is no password, skip the following parameter.
source.password_raw = {source_redis_password}
IP addresses and port numbers of all masters of the source Redis Cluster, which are separated by
semicolons (;).
source.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}
target.type = cluster
If there is no password, skip the following parameter.
target.password_raw = {target_redis_password}
IP addresses and port numbers of all masters of the target instance, which are separated by
semicolons (;).
source.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}
IP addresses and port numbers of all masters of the target instance, which are separated by
semicolons (;).
target.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}
Save and exit.

5. Migrate data online.

Run the following command to synchronize data between the source and the target Redis:

./redis-shake -type sync -conf redis-shake.conf

If the following information is displayed, the full synchronization has been completed and incremental synchronization begins.

If the following information is displayed, no new data is incremented. You can stop the incremental synchronization by pressing **Ctrl+C**.

sync: +forwardCommands=0 +filterCommands=0 +writeBytes=0

Figure 13-5 Online migration using redis-shake

1000gets provide spin and a second se
\ redis-shake, here we go !! \ /
if you have any problem, please visit https://github.com/alibaba/RedisShake/wiki/FAQ
<pre>2019/07/03 20:22:53 [INFO] redis-shake configuration: ("Id":"redis-shake","LogFile":","(uglevel":"info","SystemProfile":9318,"HttpProfile":9328,"NCpu":8,"Paralle ":32,"SourceType":"standalone","SourceAddress":"127.06.0.1:6379,"SourcePasswordEncoding":","SourceVersion":0,"SourceAuthype:"rath","Source Parallel":1,"SourceTisAbable":false,"ImagetAddress":"127.06.0.1:6379,"SourcePasswordEncoding":","SourceVersion":0,"TargetDasswordEncoding "g":","TargetVersion":0,"TargetDaSString":-1,","TargetAduthype":"auth,"TargetType":"cluster","TargetTisEnable":false,"RdbInput":[local"],"RdbOtuput":"local",","RdbOtuput":","TargetDasswordEncod "g":",","TargetVersion":0,"TargetDaSString":-1,","TargetAuthtype":"auth,"TargetType":"cluster",","TargetTisEnable":false,"RdbInput":[local"],"RdbOtuput":"local",","RdbOtuput":"local",","RdbOtuput":"local",","RdbOtuput":"local",","RdbOtuput":"local",","RdbInput":[local"],",RdbOtuput":"local",","SourceVersion":0,"False,"RdbInput":[local"],",RdbOtuput":"local",","RdbInput":[local"],",","RdbInput":[local"],","RdbOtuput":"local",",","RdbInput":[local"],","RdbOtuput":"local",","RdbInput":[local"],",","SourceVersion":0,","RdbInput":[local"],","RdbInput":[local"],",","RdbInput":[local"],",","RdbInput":[local"],",","RdbInput":[local"],",","RdbInput":[local"],",",",",",",",",",",",",",",",",",",</pre>
2019/07/03 20:22:53 [INFO] routine[0] starts syncing data from 127.0.0.1:6379 to [192.168.0.140:6379 192.168.0.61:6379 192.168.0.194:6379] with http[9321] 2019/07/03 20:22:53 [INFO] input password is empty, skip auth address[127.0.0.1:6379] with type[auth].
2019/07/03 20:22:54 [INFO] dbSyncer[0] rdb file size = 18950854 2019/07/03 20:22:54 [INFO] Aux information key:redis-ver value:3.2.12 2019/07/03 20:22:54 [INFO] Aux information key:redis-bits value:54
2019/07/03 20:22:54 [INFO] Aux information key:ctime value:1562156573 2019/07/03 20:22:54 [INFO] Aux information key:used-mem value:90132832
2019/07/03_20:22:55 [INFO] du_s12e:052280 explite_s12e:0 2019/07/03_20:22:55 [INFO] dbSyncer[0] total=1898654 - 1456787 [7%] entry=47532

6. Verify the migration.

After data synchronization, access the DCS Redis Cluster instance using rediscli. Run the **info** command to query the number of keys in the **Keyspace** section to confirm that data has been fully imported.

If the data has not been fully imported, run the **flushall** or **flushdb** command to clear the cached data in the instance, and synchronize data again.

7. Clear the redis-shake configuration file.

Importing Backup Files

If the source Redis and the destitution Redis cannot be connected, or the source Redis is deployed on other clouds, you can migrate data by importing backup files.

1. Create a Redis Cluster instance on the DCS console.

The memory of this instance cannot be smaller than that of the source Redis.

2. Run the following command to obtain the IP addresses and port numbers of all masters of the source Redis and target Redis:

redis-cli -h *{redis_address}* -p *{redis_port}* -a *{redis_password}* cluster nodes

In the command output similar to the following, obtain the IP addresses and ports of all masters.

NOTE

After Redis is installed, it runs with redis-cli. To install Redis on CentOS, run the **yum install redis** command.

3. Prepare a cloud server and install redis-shake.

redis-shake must be able to access the target Redis and bound to an EIP.

You can use ECS and configure the same VPC, subnet, and security group for the ECS and the DCS instance.

Download and decompress the release version of redis-shake. (The following uses v2.1.2 as an example.)

root@ecs-p erforments 4-centos redisshake]# ll									
total 16972	2								
-rw-rr	1	1320024	users	2749	Jun	24	16:15	ChangeLog	
-rwxr-xr-x	1	1320024	users	14225	Jun	24	16:14	hypervisor	
-rwxr-xr-x	1	1320024	users	13000971	Jun	24	16:14	redis-shake	
-rw-rr	1	1320024	users	8875	Jun	24	16:15	redis-shake.conf	
-rw-rr	1	root	root	4326892	Jun	24	16:17	refla-shaka.tar.g	
-rwxr-xr-x	1	1320024	users	458	Jun	24	16:14	start.sh	
		1220004		274		0.4	40.44	and the second sec	

NOTE

If the source Redis is deployed in the data center intranet, install redis-shake on the intranet server. Export data and then upload the data to the cloud server as instructed by the following steps

- 4. Export the RDB file.
 - Edit the redis-shake.conf file by providing the following information about all the masters of both the source and the target:
 - source.type = cluster
 - # If there is no password, skip the following parameter.

source.password_raw = {source_redis_password}

IP addresses and port numbers of all masters of the source Redis Cluster, which are separated by semicolons (;).

source.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}

Run the following command to export the RDB file:

./redis-shake -type dump -conf redis-shake.conf

If the following information is displayed in the execution log, the backup file is exported successfully:

execute runner[*run.CmdDump] finished!

- 5. Import the RDB file.
 - a. Import the RDB file (or files) to the cloud server. The cloud server must be connected to the target DCS instance.
 - b. Edit the redis-shake configuration file.

Edit the **redis-shake.conf** file by providing the following information about all the masters of both the source and the target: target.type = cluster # If there is no password, skip the following parameter. target.password_raw = {target_redis_password}
IP addresses and port numbers of all masters of the target instance, which are separated by
semicolons (;).
target.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}
List the RDB files to be imported, separated by semicolons (;).
rdb.input = local_dump.0;local_dump.1;local_dump.2;local_dump.3

Save and exit.

c. Run the following command to import the RDB file to the target instance:

./redis-shake -type restore -conf redis-shake.conf

If the following information is displayed in the execution log, the backup file is imported successfully:

Enabled http stats, set status (incr), and wait forever.

6. Verify the migration.

After data synchronization, access the DCS Redis Cluster instance using rediscli. Run the **info** command to query the number of keys in the **Keyspace** section to confirm that data has been fully imported.

If the data has not been fully imported, run the **flushall** or **flushdb** command to clear the cached data in the instance, and synchronize data again.

13.5 Migrating Data Between DCS Instances

13.5.1 Online Migration Between DCS Redis Instances

Application Scenarios

If the source and target instances are interconnected and the **SYNC** and **PSYNC** commands are supported by the source instance, data can be migrated online in full or incrementally from the source to the target.

- If the **SYNC** and **PSYNC** commands are disabled on the source Redis instance, enable them before performing online migration. Otherwise, the migration fails. If you use a DCS Redis instance for online migration, the **SYNC** command is automatically enabled.
- You cannot use public networks for online migration.
- During online migration, you are advised to set repl-timeout on the source instance to 300s and client-output-buffer-limit to 20% of the maximum memory of the instance.
- The source must be Redis 3.0 or later.

Impacts on Services

During online migration, data is essentially synchronized in full to a new replica. Therefore, perform online migration during low-demand hours.

Prerequisites

- Before migrating data, read through **Migration Tools and Schemes** to learn about the DCS data migration function and select an appropriate target instance.
- By default, a Proxy Cluster instance has only one database (DB0). Before you
 migrate data from a multi-DB single-node or master/standby instance to a
 Proxy Cluster instance, check whether any data exists on databases other than
 DB0. If yes, enable multi-DB for the Proxy Cluster instance by referring to
 Enabling Multi-DB.
- By default, a Redis Cluster instance has only one DB (DB0). Before you migrate data from a multi-DB single-node or master/standby instance to a Redis Cluster instance, check whether any data exists on databases other than DB0. To ensure that the migration succeeds, move all data to DB0 by referring to **Online Migration with Rump**.

Step 1: Obtain the Source Redis Address

Obtain the IP address/domain name and port number of the source Redis instance.

Step 2: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see Clearing DCS Instance Data.

If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

Step 3: Check the Network

Step 1 Check whether the source Redis instance, the target Redis instance, and the migration task are configured with the same VPC.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 2.

Step 2 Check whether the VPCs configured for the source Redis instance, the target Redis instance, and the migration task are connected to ensure that the VM resource of the migration task can access the source and target Redis instances.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 3.

- **Step 3** Perform the following operations to establish the network.
 - If the source and target Redis instances are in the same DCS region, create a VPC peering connection by referring to "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.
 - If the source and target Redis instances are on different clouds, create a connection by referring to the *Direct Connect User Guide*.

----End

Step 4: Create an Online Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- **Step 3** Click **Create Online Migration Task**.
- **Step 4** Enter the task name and description.
- **Step 5** Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

NOTE

- The online migration task uses a tenant IP address (**Migration ECS** displayed on the **Basic Information** page of the task.) If a whitelist is configured for the source or target instance, add the migration IP address to the whitelist or disable the whitelist.
- To allow the VM used by the migration task to access the source and target instances, set an outbound rule for the task's security group to allow traffic through the IP addresses and ports of the source and target instances. By default, all outbound traffic is allowed.

```
----End
```

Step 5: Configure the Online Migration Task

- **Step 1** On the **Online Migration** tab page, click **Configure** in the row containing the online migration task you just created.
- **Step 2** Select a migration type.

Supported migration types are **Full** and **Full + Incremental**, which are described in **Table 13-6**.

Migration Type	Description			
Full	Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source instance data updated during the migration will not be migrated to the target instance.			
Full + incremental	Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source and target instances.			
	Once the migration starts, it remains Migrating until you click Stop in the Operation column. After the migration is stopped, data in the source instance will not be lost, but data will not be written to the target instance. When the transmission network is stable, the delay of incremental migration is within seconds. The actual delay depends on the transmission quality of the network link.			

 Table 13-6 Migration type description

Figure 13-6 Selecting the migration type

* Migration Type	• Full Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source Redis data updated during the migration will not be migrated to the target instance.
	Full + Incremental Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source Redis and target Redis.

Step 3 Configure source Redis and target Redis.

- 1. **Source Redis Type**: Select **Redis in the cloud** or **Self-hosted Redis** as required.
 - Redis in the cloud: a DCS Redis instance that is in the same VPC as the migration task
 - Self-hosted Redis: self-hosted Redis on this service, in another cloud, or in on-premises data centers. If you select this option, enter Redis addresses.
- 2. If the instance is password-protected, you can click **Test Connection** to check whether the instance password is correct and whether the network is connected.
- Step 4 For Target Redis Instance, select the DCS Redis instance prepared in Step 2: Prepare the Target DCS Redis Instance.

If the instance is password-protected, you can click **Test Connection** to check whether the instance password meets the requirements.

Step 5 Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

D NOTE

- Once incremental migration starts, it remains **Migrating** until you click **Stop**.
- To stop a migration task, select the check box on the left of the migration task and click **Stop** above the instance list.

If the migration fails, click the migration task and check the log on the **Migration Logs** page.

----End

Verifying the Migration

After the migration is complete, use redis-cli to connect the source and target Redis instances to check data integrity.

- 1. Connect to the source Redis and the target Redis.
- 2. Run the info keyspace command to check the values of keys and expires.

3. Calculate the differences between the values of **keys** and **expires** of the source Redis and the target Redis. If the differences are the same, the data is complete and the migration is successful.

During full migration, source Redis data updated during the migration will not be migrated to the target instance.

13.5.2 Backup Migration Between Regions or Redis Versions

Application Scenarios

Use the DCS console to migrate Redis data from Redis of another cloud or self-hosted Redis to DCS for Redis.

Simply download the source Redis data and then upload the data to an OBS bucket in the same region as the target DCS Redis instance. After you have created a migration task on the DCS console, DCS will read data from the OBS bucket and data will be migrated to the target instance.

.aof, .rdb, .zip, and .tar.gz files can be uploaded to OBS buckets. You can directly upload .aof and .rdb files or compress them into .zip or .tar.gz files before uploading.

Prerequisites

- The OBS bucket must be in the same region as the target DCS Redis instance.
- The data files to be uploaded must be in the .aof, .rdb, .zip, or .tar.gz format.
- To migrate data from a single-node or master/standby Redis instance of another cloud, create a backup task and download the backup file.
- To migrate data from a cluster Redis instance of another cloud, download all backup files, upload all of them to the OBS bucket, and select all of them for the migration. Each backup file contains data for a shard of the instance.

Step 1: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see **Clearing DCS Instance Data**.

Step 2: Create an OBS Bucket and Upload Backup Files

- **Step 1** Create an OBS bucket.
 - 1. Log in to the OBS Console and click **Create Bucket**.
 - 2. Select a region.
 - The OBS bucket must be in the same region as the target DCS Redis instance.
 - Specify Bucket Name.
 The bucket name must meet the naming rules specified on the console.
 - 4. Set Storage Class to Standard, Warm or Cold.

- 5. Set **Bucket Policy** to **Private**, **Public Read**, or **Public Read and Write**.
- 6. Configure default encryption.
- 7. Click Create Now.
- Step 2 Upload the backup data files to the OBS bucket by using OBS Browser+.

If the backup file to be uploaded does not exceed 5 GB, upload the file using the OBS console by referring to step **Step 3**.

If the backup file to be uploaded is larger than 5 GB, perform the following steps to upload the file using OBS Browser+.

1. Download OBS Browser+.

For details, see section "Downloading OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

2. Install OBS Browser+.

For details, see section "Installing OBS Browser+" in *Object Storage Service* (*OBS) Tools Guide* (*OBS Browser+*) > "Getting Started".

3. Log in to OBS Browser+.

For details, see section "Logging In to OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

- 4. Create a bucket.
- 5. Upload backup data.
- **Step 3** On the OBS console, upload the backup data files to the OBS bucket.

Perform the following steps if the backup file size does not exceed 5 GB:

- 1. In the bucket list, click the name of the created bucket.
- 2. In the navigation pane, choose **Objects**.
- 3. On the **Objects** tab page, click **Upload Object**.
- 4. Upload the objects.

To upload objects, drag files or folders to the **Upload Object** area or click **add file**. A maximum of 100 files can be uploaded at a time. The total size cannot exceed 5 GB.

Figure 13-7 Uploading an object

Upload Obje	Ct How to Upload a	File Greater than 5 G	B?					,
Object Permission	Private	Public Read	Public	Read and Write				
Storage Class	Standard	Warm	Cold					
	Optimized for frequ	uently accessed (multi	iple times per	month) data such a	s small and esse	ntial files that re	quire low latency.	
	The default storage more	e class is the same as	that of the bu	ucket. You can chang	e the storage cla	iss according to y	our actual needs. Le	arn
Upload Object	Note: If the bucket the existing file/fol	is not versioning-ena der.The file name canr	bled, uploadir 10t contain sp	ng a file/folder with t becial characters / or	he name that al \	ready exists in th	e bucket will replac	e
				OBS				
		(A maximum of 10	Drag files o 0 files can be	r folders here to uplo uploaded at a time.	ad. Or add file The total size ca	innot exceed 5 Gl	B.)	
Encryption	Encrypts the file fo	r secure storage. The e n	encryption sta	atus of the encrypted	file cannot be c	hanged.		
			Unload	Cancel				

- 5. (Optional) Select **KMS encryption** to encrypt the file you want to upload.
- 6. Click Upload.
- ----End

Step 3: Create a Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- Step 3 Click Create Backup Import Task.
- **Step 4** Enter the task name and description.
- **Step 5** In the **Source Redis** area, select **OBS Bucket** for **Data Source** and then select the OBS bucket to which you have uploaded backup files.

In the **Backup Files** table, the files you have uploaded are displayed.

NOTE

You can upload files in the .aof, .rdb, .zip, or .tar.gz format.

Figure 13-8 Specifying the backup file information

Source Redis				
* Data Source	OBS bucket	Redis		
* OBS Bucket	05041fffa40025702f6dc009cc6f8f33-hilens-s 🔻 C View Bucket			
* Backup Files	To import data from multiple backup files, you can create multiple migration tasks and run them at a time.			
	Name			Size
	tes ns.zip			9.46 KB

Step 6 Select the backup files whose data is to be migrated.

- Step 7 Select the target Redis instance prepared in Step 1: Prepare the Target DCS Redis Instance. If the target Redis instance has a password, enter the password and test the connection to check whether the password is correct.
- Step 8 Click Next.
- **Step 9** Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

----End

13.6 Migrating Redis Data from Another Cloud to DCS

13.6.1 Online Migration from Another Cloud

Application Scenarios

If the source and target instances are interconnected and the **SYNC** and **PSYNC** commands are supported by the source instance, data can be migrated online in full or incrementally from the source to the target.

- If the **SYNC** and **PSYNC** commands are disabled on the source Redis instance, enable them before performing online migration. Otherwise, the migration fails. If you use a DCS Redis instance for online migration, the **SYNC** command is automatically enabled.
- You cannot use public networks for online migration.
- During online migration, you are advised to set **repl-timeout** on the source instance to 300s and **client-output-buffer-limit** to 20% of the maximum memory of the instance.
- The source must be Redis 3.0 or later.

Impacts on Services

During online migration, data is essentially synchronized in full to a new replica. Therefore, perform online migration during low-demand hours.

Prerequisites

- Before migrating data, read through Migration Tools and Schemes to learn about the DCS data migration function and select an appropriate target instance.
- By default, a Proxy Cluster instance has only one database (DB0). Before you migrate data from a multi-DB single-node or master/standby instance to a Proxy Cluster instance, check whether any data exists on databases other than

DB0. If yes, enable multi-DB for the Proxy Cluster instance by referring to **Enabling Multi-DB**.

By default, a Redis Cluster instance has only one DB (DB0). Before you
migrate data from a multi-DB single-node or master/standby instance to a
Redis Cluster instance, check whether any data exists on databases other than
DB0. To ensure that the migration succeeds, move all data to DB0 by referring
to Online Migration with Rump.

Step 1: Obtain the Source Redis Address

Obtain the IP address/domain name and port number of the source Redis instance.

Step 2: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see Creating a DCS Redis Instance.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see Clearing DCS Instance Data.

If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

Step 3: Check the Network

Step 1 Check whether the source Redis instance, the target Redis instance, and the migration task are configured with the same VPC.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 2.

Step 2 Check whether the VPCs configured for the source Redis instance, the target Redis instance, and the migration task are connected to ensure that the VM resource of the migration task can access the source and target Redis instances.

If yes, go to Step 4: Create an Online Migration Task. If no, go to Step 3.

- **Step 3** Perform the following operations to establish the network.
 - If the source and target Redis instances are in the same DCS region, create a VPC peering connection by referring to "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.
 - If the source and target Redis instances are on different clouds, create a connection by referring to the *Direct Connect User Guide*.

----End

Step 4: Create an Online Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- Step 3 Click Create Online Migration Task.
Step 4 Enter the task name and description.

Step 5 Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

NOTE

- The online migration task uses a tenant IP address (**Migration ECS** displayed on the **Basic Information** page of the task.) If a whitelist is configured for the source or target instance, add the migration IP address to the whitelist or disable the whitelist.
- To allow the VM used by the migration task to access the source and target instances, set an outbound rule for the task's security group to allow traffic through the IP addresses and ports of the source and target instances. By default, all outbound traffic is allowed.

----End

Step 5: Configure the Online Migration Task

- **Step 1** On the **Online Migration** tab page, click **Configure** in the row containing the online migration task you just created.
- **Step 2** Select a migration type.

Supported migration types are **Full** and **Full + Incremental**, which are described in **Table 13-7**.

Migration Type	Description
Full	Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source instance data updated during the migration will not be migrated to the target instance.
Full + incremental	Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source and target instances.
	Once the migration starts, it remains Migrating until you click Stop in the Operation column. After the migration is stopped, data in the source instance will not be lost, but data will not be written to the target instance. When the transmission network is stable, the delay of incremental migration is within seconds. The actual delay depends on the transmission quality of the network link.

 Table 13-7 Migration type description

Figure 13-9 Selecting the migration type

* Migration Type	• Full Suitable for scenarios where services can be interrupted. Data is migrated at one time. Source Redis data updated during the migration will not be migrated to the target instance.
	Full + Incremental Suitable for scenarios requiring minimal service downtime. The incremental migration parses logs to ensure data consistency between the source Redis and target Redis.

- **Step 3** Configure source Redis and target Redis.
 - 1. **Source Redis Type**: Select **Redis in the cloud** or **Self-hosted Redis** as required.
 - Redis in the cloud: a DCS Redis instance that is in the same VPC as the migration task
 - Self-hosted Redis: self-hosted Redis on this service, in another cloud, or in on-premises data centers. If you select this option, enter Redis addresses.
 - 2. If the instance is password-protected, you can click **Test Connection** to check whether the instance password is correct and whether the network is connected.
- Step 4 For Target Redis Instance, select the DCS Redis instance prepared in Step 2: Prepare the Target DCS Redis Instance.

If the instance is password-protected, you can click **Test Connection** to check whether the instance password meets the requirements.

Step 5 Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

NOTE

- Once incremental migration starts, it remains Migrating until you click Stop.
- To stop a migration task, select the check box on the left of the migration task and click **Stop** above the instance list.

If the migration fails, click the migration task and check the log on the **Migration Logs** page.

----End

Verifying the Migration

After the migration is complete, use redis-cli to connect the source and target Redis instances to check data integrity.

- 1. Connect to the source Redis and the target Redis.
- 2. Run the info keyspace command to check the values of keys and expires.

3. Calculate the differences between the values of **keys** and **expires** of the source Redis and the target Redis. If the differences are the same, the data is complete and the migration is successful.

During full migration, source Redis data updated during the migration will not be migrated to the target instance.

13.6.2 Backup Migration from Another Cloud

Application Scenarios

Use the DCS console to migrate Redis data from Redis of another cloud or self-hosted Redis to DCS for Redis.

Simply download the source Redis data and then upload the data to an OBS bucket in the same region as the target DCS Redis instance. After you have created a migration task on the DCS console, DCS will read data from the OBS bucket and data will be migrated to the target instance.

.aof, .rdb, .zip, and .tar.gz files can be uploaded to OBS buckets. You can directly upload .aof and .rdb files or compress them into .zip or .tar.gz files before uploading.

Prerequisites

- The OBS bucket must be in the same region as the target DCS Redis instance.
- The data files to be uploaded must be in the .aof, .rdb, .zip, or .tar.gz format.
- To migrate data from a single-node or master/standby Redis instance of another cloud, create a backup task and download the backup file.
- To migrate data from a cluster Redis instance of another cloud, download all backup files, upload all of them to the OBS bucket, and select all of them for the migration. Each backup file contains data for a shard of the instance.

Step 1: Prepare the Target DCS Redis Instance

- If a target DCS Redis instance is not available, create one first. For details, see **Creating a DCS Redis Instance**.
- If you already have a DCS Redis instance, you do not need to create one again, but you need to clear the instance data before the migration. For details, see **Clearing DCS Instance Data**.

Step 2: Create an OBS Bucket and Upload Backup Files

- **Step 1** Create an OBS bucket.
 - 1. Log in to the OBS Console and click **Create Bucket**.
 - 2. Select a region.
 - The OBS bucket must be in the same region as the target DCS Redis instance.
 - Specify Bucket Name.
 The bucket name must meet the naming rules specified on the console.
 - 4. Set Storage Class to Standard, Warm or Cold.

- 5. Set **Bucket Policy** to **Private**, **Public Read**, or **Public Read and Write**.
- 6. Configure default encryption.
- 7. Click Create Now.
- Step 2 Upload the backup data files to the OBS bucket by using OBS Browser+.

If the backup file to be uploaded does not exceed 5 GB, upload the file using the OBS console by referring to step **Step 3**.

If the backup file to be uploaded is larger than 5 GB, perform the following steps to upload the file using OBS Browser+.

1. Download OBS Browser+.

For details, see section "Downloading OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

2. Install OBS Browser+.

For details, see section "Installing OBS Browser+" in *Object Storage Service* (*OBS) Tools Guide* (*OBS Browser+*) > "Getting Started".

3. Log in to OBS Browser+.

For details, see section "Logging In to OBS Browser+" in *Object Storage Service (OBS) Tools Guide (OBS Browser+)* > "Getting Started".

- 4. Create a bucket.
- 5. Upload backup data.
- **Step 3** On the OBS console, upload the backup data files to the OBS bucket.

Perform the following steps if the backup file size does not exceed 5 GB:

- 1. In the bucket list, click the name of the created bucket.
- 2. In the navigation pane, choose **Objects**.
- 3. On the **Objects** tab page, click **Upload Object**.
- 4. Upload the objects.

To upload objects, drag files or folders to the **Upload Object** area or click **add file**. A maximum of 100 files can be uploaded at a time. The total size cannot exceed 5 GB.

Figure 13-10 Uploading an object

Upload Objec	t How to Upload a	File Greater than 5 G	B?					
Object Permission	Private	Public Read	Public	Read and Write				
Storage Class	Standard	Warm	Cold					
	Optimized for frequ	ently accessed (multi	iple times per	month) data such a	small and essen	tial files that requir	e low latency.	
	The default storage more	class is the same as t	that of the bu	icket. You can chang	e the storage clas	s according to your	actual needs. Lear	m
Upload Object	Note: If the bucket the existing file/fold	s not versioning-enal ler.The file name canr	bled, uploadir 10t contain sp	ng a file/folder with t becial characters / or	he name that alre	eady exists in the b	ucket will replace	
				OBS				
		(A maximum of 10	Drag files o 0 files can be	r folders here to uplo uploaded at a time.	ad. Or add file The total size can	not exceed 5 GB.)		
Encryption	Encrypts the file for KMS encryption	secure storage. The e	encryption sta	itus of the encrypted	file cannot be ch	anged.		
			Upload	Cancel				

- 5. (Optional) Select **KMS encryption** to encrypt the file you want to upload.
- 6. Click Upload.
- ----End

Step 3: Create a Migration Task

- **Step 1** Log in to the DCS console.
- **Step 2** In the navigation pane, choose **Data Migration**.
- Step 3 Click Create Backup Import Task.
- **Step 4** Enter the task name and description.
- **Step 5** In the **Source Redis** area, select **OBS Bucket** for **Data Source** and then select the OBS bucket to which you have uploaded backup files.

In the **Backup Files** table, the files you have uploaded are displayed.

NOTE

You can upload files in the .aof, .rdb, .zip, or .tar.gz format.

Figure 13-11 Specifying the backup file information

Source Redis			
* Data Source	OBS bucket Redis	6	
* OBS Bucket	05041fffa40025702f6dc009cc6f8f33-hiler	15-5 View Bucket	
* Backup Files	o import data from multiple backup files,	you can create multiple migration tasks and run them at a time.	
	Name		Size
	tes ns.zip		9.46 KB

Step 6 Select the backup files whose data is to be migrated.

Step 7 Select the target Redis instance prepared in Step 1: Prepare the Target DCS Redis Instance. If the target Redis instance has a password, enter the password and test the connection to check whether the password is correct.

Step 8 Click Next.

Step 9 Confirm the migration task details and click **Submit**.

Go back to the data migration task list. After the migration is successful, the task status changes to **Successful**.

----End

13.6.3 Online Migration with Rump

Background

- Redis instances provided by some cloud service vendors do not allow **SLAVEOF**, **BGSAVE**, and **PSYNC** commands to be issued from Redis clients. As a result, redis-cli, redis-shake, and other tools cannot be used to export data.
- Using the KEYS command may block Redis.
- Cloud service vendors usually only support downloading backup files. This method is suitable only for offline migration, featuring longer service interruption.

Rump is an open-source tool designed for migrating Redis data online. It supports migration between DBs of the same instance and between DBs of different instances.

Migration Principles

Rump uses the **SCAN** command to acquire keys and the **DUMP/RESTORE** command to get or set values.

Featuring time complexity O(1), **SCAN** is capable of quickly getting all keys. **DUMP/RESTORE** is used to read/write values independent from the key type.

Rump brings the following benefits:

- The SCAN command replaces the KEYS command to avoid blocking Redis.
- Any type of data can be migrated.
- **SCAN** and **DUMP/RESTORE** operations are pipelined, improving the network efficiency during data migration.
- No temporary file is involved, saving disk space.
- Buffered channels are used to optimize performance of the source server.

NOTICE

- 1. To cluster DCS instances, you cannot use Rump. Instead, use redis-shake or redis-cli.
- 2. To prevent migration command resolution errors, do not include special characters (#@:) in the instance password.
- 3. Stop the service before migrating data. If data is kept being written in during the migration, some keys might be lost.

Step 1: Installing Rump

1. Download Rump (release version).

On 64-bit Linux, run the following command:

wget https://github.com/stickermule/rump/releases/download/0.0.3/ rump-0.0.3-linux-amd64;

2. After decompression, run the following commands to add the execution permission:

mv rump-0.0.3-linux-amd64 rump; chmod +x rump;

Step 2: Migrating Data

rump -from {source_redis_address} -to {target_redis_address}

Parameter/Option description:

• {source_redis_address}

Source Redis instance address, in the format of redis:// [user:password@]host:port/db. **[user:password@]** is optional. If the instance is accessed in password-protected mode, you must specify the password in the RFC 3986 format. **user** can be omitted, but the colon (:) cannot be omitted. For example, the address may be **redis://:mypassword@192.168.0.45:6379/1**.

db is the sequence number of the database. If it is not specified, the default value is 0.

• { target_redis_address}

Address of the target Redis instance, in the same format as the source.

In the following example, data in DB0 of the source Redis is migrated to the target Redis whose connection address is 192.168.0.153. ****** stands for the password.

```
[root@ecs ~]# ./rump -from redis://127.0.0.1:6379/0 -to redis://:*****@192.168.0.153:6379/0 .Sync done.
[root@ecs ~]#
```

13.6.4 Offline Migration of Redis Cluster from Another Cloud with redis-shake

redis-shake is an open-source tool for migrating data online or offline (by importing backup files) between Redis Clusters. If the source Redis Cluster is

deployed in another cloud, and online migration is not supported, you can migrate data by importing backup files.

The following describes how to use redis-shake for backup migration to a DCS Redis Cluster instance.

Importing Backup Files

If the source Redis and the destitution Redis cannot be connected, or the source Redis is deployed on other clouds, you can migrate data by importing backup files.

1. Create a Redis Cluster instance on the DCS console.

The memory of this instance cannot be smaller than that of the source Redis.

2. Run the following command to obtain the IP addresses and port numbers of all masters of the source Redis and target Redis:

redis-cli -h *{redis_address}* -p *{redis_port}* -a *{redis_password}* cluster nodes

In the command output similar to the following, obtain the IP addresses and ports of all masters.

NOTE

After Redis is installed, it runs with redis-cli. To install Redis on CentOS, run the **yum install redis** command.

3. Prepare a cloud server and install redis-shake.

redis-shake must be able to access the target Redis and bound to an EIP.

You can use ECS and configure the same VPC, subnet, and security group for the ECS and the DCS instance.

Download and decompress the release version of redis-shake. (The following uses v2.1.2 as an example. You can also use **other redis-shake versions**.)

root@ecs-period # 4-centos redisshake]# 11								
total 16972	2							
-rw-rr	1	1320024	users	2749	Jun	24	16:15	ChangeLog
-rwxr-xr-x	1	1320024	users	14225	Jun	24	16:14	hypervisor
-rwxr-xr-x	1	1320024	users	13000971	Jun	24	16:14	redis-shake
-rw-rr	1	1320024	users	8875	Jun	24	16:15	redis-shake.conf
-rw-rr	1	root	root	4326892	Jun	24	16:17	redis-shake.tar.g
-rwxr-xr-x	1	1320024	users	458	Jun	24	16:14	start.sh
- nuvr-vr-v	1	1320024	lisens	374	Jun	24	16.14	ston sh

NOTE

If the source Redis is deployed in the data center intranet, install redis-shake on the intranet server. Export data and then upload the data to the cloud server as instructed by the following steps

- 4. Export the RDB file.
 - Edit the redis-shake.conf file by providing the following information about all the masters of both the source and the target:

source.type = cluster

If there is no password, skip the following parameter.

source.password_raw = {source_redis_password}

IP addresses and port numbers of all masters of the source Redis Cluster, which are separated by semicolons (;).

source.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}:
{masterN_port}

- Run the following command to export the RDB file:

./redis-shake -type dump -conf redis-shake.conf

If the following information is displayed in the execution log, the backup file is exported successfully:

execute runner[*run.CmdDump] finished!

- 5. Import the RDB file.
 - a. Import the RDB file (or files) to the cloud server. The cloud server must be connected to the target DCS instance.
 - b. Edit the redis-shake configuration file.

Edit the **redis-shake.conf** file by providing the following information about all the masters of both the source and the target: target.type = cluster # If there is no password, skip the following parameter. target.password_raw = {target_redis_password} # IP addresses and port numbers of all masters of the target instance, which are separated by semicolons (;). target.address = {master1_ip}:{master1_port};{master2_ip}:{master2_port}...{masterN_ip}: {masterN_port} # List the RDB files to be imported, separated by semicolons (;). rdb.input = loca_dump.0;local_dump.1;local_dump.2;local_dump.3

Save and exit.

c. Run the following command to import the RDB file to the target instance:

./redis-shake -type restore -conf redis-shake.conf

If the following information is displayed in the execution log, the backup file is imported successfully:

Enabled http stats, set status (incr), and wait forever.

6. Verify the migration.

After data synchronization, access the DCS Redis Cluster instance using rediscli. Run the **info** command to query the number of keys in the **Keyspace** section to confirm that data has been fully imported.

If the data has not been fully imported, run the **flushall** or **flushdb** command to clear the cached data in the instance, and synchronize data again.

13.6.5 Online Full Migration of Redis from Another Cloud with redis-shake

redis-shake is an open-source Redis migration tool. Its **rump** mode allows you to obtain the full data of a source Redis using the **SCAN** command and write the data to a target Redis. This migration solution does not involve the **SYNC** or **PSYNC** command and can be widely used for migration between self-built Redis and cloud Redis.

This section describes how to use the **rump** mode of redis-shake to migrate the full Redis data of another cloud service vendor at a time online to DCS.

Figure 13-12 Data flow in this solution

Prerequisites

- A DCS Redis instance has been created on the target cloud.
- An ECS has been created on the target cloud for running redis-shake.
- The ECS is in the same VPC as the DCS Redis instance and bound with an EIP.
- The **rump** mode does not support incremental data migration. To keep data consistency, stop writing data to the source Redis before migration.
- This solution applies only to same-database mapping and does not apply to inter-database mapping.
- If the source Redis has multiple databases (there are databases other than DB0), and your DCS instance is Proxy Cluster, multi-DB must be enabled for the DCS instance. Otherwise, the migration will fail. (Single-DB Proxy Cluster instances do not support the **SELECT** command.)
- If the source Redis has multiple databases (there are databases other than DB0), and your DCS instance is Redis Cluster, this solution cannot be used. (Redis Cluster DCS instances support only DB0.)

Procedure

- **Step 1** Install Nginx on the ECS and the source forwarding server. The following describes how to install Nginx on an ECS running CentOS 7.x. The commands vary depending on the OS.
 - 1. Add Nginx to the Yum repository. sudo rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-releasecentos-7-0.el7.ngx.noarch.rpm
 - 2. Check whether Nginx has been added successfully. yum search nginx
 - 3. Install Nginx. sudo yum install -y nginx
 - 4. Install the stream module. yum install nginx-mod-stream --skip-broken
 - 5. Start Nginx and set it to run automatically upon system startup. sudo systemctl start nginx.service sudo systemctl enable nginx.service
 - 6. In the address box of a browser, enter the server address (the EIP of the ECS) to check whether Nginx is installed successfully.

If the following page is displayed, Nginx has been installed successfully.

Welcome to nginx on Red Hat Enterprise Linux!
This page is used to test the proper operation of the nginx HTTP server after it has been installed. If you can read this page, it means that the web server installed at this site is working properly.
Website Administrator
This is the default index has page that is distributed with nginx on Red Hat Enterprise Linux. It is located in /usr/sharv/sgim/has1.
You should now put your content in a location of your choice and edit the rest configuration directive in the nginx configuration file /ste/sgias/sgias.esaß.
For information on Red Hat Enterprise Linux, please visit the Red Hat. Inc. website. The documentation for Red Hat Enterprise Linux is available on the Red Hat. Inc. website.

- Step 2 Add the source forwarding server to the whitelist of the source Redis.
- **Step 3** Configure a security group for the source forwarding server.
 - 1. Obtain the EIP of the ECS.
 - 2. In the inbound rule of the security group of the source forwarding server, add the EIP of the ECS, and open the port that ECS's requests come through. The following takes port 6379 as an example.
- **Step 4** Configure Nginx forwarding for the source forwarding server.
 - Log in to the Linux source forwarding server and run the following commands to open and modify the configuration file: cd /etc/nginx vi nginx.conf
 - 2. Example forwarding configuration:

```
stream {
    server {
        listen 6379;
        proxy_pass {source_instance_address}:{port};
    }
    }
}
```

6379 is the listening port of the source forwarding server.

{source_instance_address} and *{port}* are the connection address and port of the source Redis instance.

This configuration allows you to access the source Redis through the local listening port 6379 of the source forwarding server.

This configuration must be added exactly where it is shown in the following figure.

Figure 13-13 Configuration location

<pre># Load dynamic modules. See /usr/share/doc/nginx/README.dynamic. include /usr/share/nginx/modules/*.conf;</pre>
events { worker_connections 1024; } ↓
stream {
server {

- 3. Restart Nginx. service nginx restart
- 4. Verify whether Nginx has been started. netstat -an|grep 6379

If the port is being listened, Nginx has been started successfully.

Figure 13-14 Verification result

tcp 0 0.0.0.0:6379 0.0.0.0:* LISTEN

Step 5 Configure Nginx forwarding for the ECS.

1. Log in to the Linux ECS and run the following commands to open and modify the configuration file:

cd /etc/nginx

vi nginx.conf

2. Configuration example:

```
stream {
    server {
        listen 6666;
        proxy_pass {source_ecs_address}:6379;
    }
    }
```

6666 is ECS's listening port, *{source_ecs_address}* is the public IP address of the source forwarding server, and **6379** is the listening port of the source forwarding server Nginx.

This configuration allows you to access the source forwarding server through the local listening port 6666 of the ECS.

This configuration must be added exactly where it is shown in the following figure.

Figure 13-15 Configuration location

- 3. Restart Nginx. service nginx restart
- 4. Verify whether Nginx has been started. netstat -an|grep 6666

If the port is being listened, Nginx has been started successfully.

Figure 13-16 Verification result

0 0.0.0.0:666

Step 6 Run the following command on the ECS to test the network connection of port 6666:

redis-cli -h {target_ecs_address} -p 6666 -a {password}

{target_ecs_address} is the EIP of the ECS, **6666** is the listening port of the ECS, and *{password}* is the source Redis password. If there is no password, leave it blank.

LISTEN

Figure 13-17 Connection example

```
[root@migrationtoolserver conf.d]# redis-cli -h
ЭK
:6666> info server
 Server
edis version:5.0.13
redis git shal:01fcc85a
redis_git_dirty:1
edis build id:97db56f84cd0ec69
edis mode:standalone
os:Linux
arch bits:64
multiplexing api:epoll
atomicvar_api:atomic-builtin
gcc version:0.0.0
process id:102557
run id:a98007001c00368d619f772aaba236d704f585f9
tcp port:6379
uptime in seconds:899
uptime in days:0
hz:10
configured hz:10
lru clock:15186745
executable:
config file:
io threads active:0
19.0.1 :6666> info
```

Step 7 Prepare the migration tool redis-shake.

- 1. Log in to the ECS.
- Download redis-shake. Version 2.0.3 is used as an example. You can use other redis-shake versions as required. wget https://github.com/alibaba/RedisShake/releases/download/release-v2.0.3-20200724/redis-shakev2.0.3.tar.gz
- 3. Decompress the redis-shake file. tar -xvf redis-shake-v2.0.3.tar.gz

Step 8 Configure the redis-shake configuration file.

- 1. Go to the directory generated after the decompression. cd redis-shake-v2.0.3
- 2. Modify the **redis-shake.conf** configuration file. vim redis-shake.conf

Modify the source Redis configuration.

source.type

Type of the source Redis instance. Use **standalone** for single-node, master/standby, and Proxy Cluster, and **cluster** for cluster instances.

source.address

EIP of the ECS and the mapped port of the source forwarding server (ECS's listening port 6666). Separate the EIP and port number with a colon (:).

source.password_raw

Password of the source Redis instance. If no password is set, you do not need to set this parameter.

Modify the target DCS configuration.

target.type

Type of the DCS Redis instance. Use **standalone** for single-node, master/ standby, and Proxy Cluster, and **cluster** for cluster instances.

- target.address
 Colon (:) separated connection address and port of the DCS Redis instance.
- target.password_raw

Password of the DCS Redis instance. If no password is set, you do not need to set this parameter.

- 3. Press **Esc** to exit the editing mode and enter **:wq!**. Press **Enter** to save the configuration and exit the editing interface.
- **Step 9** Run the following command to start redis-shake and migrate data in the **rump** (online in full) mode:

./redis-shake.linux -conf redis-shake.conf -type rump

Figure 13-18 Migration process

Figure 13-19 Migration result

- **Step 10** After the migration is complete, use redis-cli to connect to the source and target Redis instances to check whether the data is complete.
 - 1. Connect to the source and target Redis instances, respectively.

For details, see Accessing a DCS Redis Instance Through redis-cli.

- 2. Run the **info keyspace** command to check the values of **keys** and **expires**.
- 3. Calculate the differences between the values of **keys** and **expires** of the source Redis and the target Redis. If the differences are the same, the data is complete and the migration is successful.

Step 11 Delete the redis-shake configuration file.

----End

13.7 Migrating Data from DCS to Self-Hosted Redis

Scenario

You can use the online migration function of the DCS console to migrate DCS Redis instances to your self-hosted Redis. You can also export the DCS instance data to an RDB file and import it to local or self-hosted Redis.

Recommended Solutions

- Online migration on the DCS console
 For details, see Online Migration of Self-Hosted Redis. Select Self-hosted
 Redis and enter the target Redis address when configuring the target Redis.
- Use redis-cli or the DCS console to export the DCS instance data to an RDB file, and then use redis-shake to import the file to the target.

For details about how to install and use redis-shake, see **Self-Hosted Redis Cluster Migration with redis-shake** and **redis-shake configuration instructions**.

• Rump

This tool is recommended for online migration if possible. For details, see **Online Migration with Rump**.

14_{FAQs}

14.1 Instance Types/Versions

14.1.1 Comparing Versions

When creating a DCS Redis instance, you can select the cache engine version and the instance type.

• Version

DCS supports Redis 3.0/4.0/5.0/6.0. **Table 14-1** describes the differences between these versions. For more information about Redis 4.0 and 5.0 features, see **New Features of DCS for Redis 4.0** and **New Features of DCS for Redis 5.0**.

Table 14-1 Differences between Redis	versions
--------------------------------------	----------

Item	Redis 3.0	Redis 4.0 and Redis 5.0	Redis 6.0
Ope n- sour ce com pati bility	Redis 3.0.7	Redis 4.0.14 The latest DCS for Redis 5.0 is compatible with Redis 5.0.14. For existing users, see How Do I View the Version of a DCS Redis Instance? .	6.2.7
Insta nce depl oym ent mod e	Based on VMs	Containerized based on physical servers	Containerized based on physical servers

Item	Redis 3.0	Redis 4.0 and Redis 5.0	Redis 6.0
CPU archi tect ure	x86 and Arm	x86 and Arm	x86
Tim e requ ired for crea ting an insta nce	3–15 minutes, or 10–30 minutes for cluster instances.	8 seconds	8 seconds
QPS	100,000 QPS per node	100,000 QPS per node	150,000 QPS per node
Publ ic net wor k acce ss	Supported	Not supported	Not supported
Dom ain nam e conn ectio n	Supported within a VPC	Supported within a VPC	Supported within a VPC
Visu alize d data man age men t	Not supported	Web CLI for connecting to Redis and managing data	Web CLI for connecting to Redis and managing data
lnsta nce type s	Single-node, master/ standby, and Proxy Cluster	Single-node, master/ standby, Proxy Cluster, and Redis Cluster	Single-node and master/ standby

Item	Redis 3.0	Redis 4.0 and Redis 5.0	Redis 6.0
Insta nce total me mor y	Ranges from 2 GB to 1024 GB.	Regular specifications range from 2 GB to 1024 GB. Small specifications of 128 MB, 256 MB, 512 MB, and 1 GB are also available for single-node and master/standby instances.	4 GB, 8 GB, 16 GB, 32 GB, and 64 GB (128 MB, 256 MB, 512 MB, and 1 GB are additionally supported for single- node and master/ standby instances)
Scal e-up or scale - dow n	Online scale-up and scale- down	Online scale-up and scale- down	Online scale-up and scale-down
Back up and rest orati on	Supported for master/ standby and cluster instances	Supported for master/ standby and cluster instances	Supported for master/ standby instances

NOTE

The underlying architectures vary by Redis version. Once a Redis version is chosen, it cannot be changed. For example, you cannot upgrade a DCS Redis 3.0 instance to Redis 4.0 or 5.0. If you require a higher Redis version, create a new instance that meets your requirements and then migrate data from the old instance to the new one.

• Instance type

DCS provides single-node, master/standby, Proxy Cluster, and Redis Cluster instance types. For details about their architectures and application scenarios, see section "DCS Instance Types".

14.1.2 New Features of DCS for Redis 4.0

Compared with DCS for Redis 3.0, DCS for Redis 4.0 and later versions add support for the new features of open-source Redis and supports faster instance creation.

Instance deployment changed from the VM mode to physical server-based containerization mode. An instance can be created within 8 to 10 seconds.

Redis 4.0 provides the following new features:

- 1. New commands, such as **MEMORY** and **SWAPDB**
- 2. Lazyfree, delaying the deletion of large keys and reducing the impact of the deletion on system resources
- 3. Memory performance optimization, that is, active defragmentation

MEMORY Command

In Redis 3.0 and earlier versions, you can execute the **INFO MEMORY** command to learn only the limited memory statistics. Redis 4.0 introduces the **MEMORY** command to help you better understand Redis memory usage.

127.0.0.1:6379[8]> memory help
1) MEMORY <subcommand> arg arg ... arg. Subcommands are:
2) DOCTOR - Return memory problems reports.
3) MALLOC-STATS -- Return internal statistics report from the memory allocator.
4) PURGE -- Attempt to purge dirty pages for reclamation by the allocator.
5) STATS -- Return information about the memory usage of the server.
6) USAGE <key> [SAMPLES <count>] -- Return memory in bytes used by <key> and its value. Nested values are sampled up to <count
> times (default: 5).
127.0.0.1:6379[8]>

usage

Enter **memory usage** *[key]*. If the key exists, the estimated memory used by the value of the key is returned. If the key does not exist, **nil** is returned.

127.0.0.1:6379[8]> set dcs "DCS is an online, distributed, in-memory cache service compatible with Redis, and Memcached." OK 127.0.0.1:6379[8]> memory usage dcs (integer) 141 127.0.0.1:6379[8]>

NOTE

- 1. usage collects statistics on the memory usage of the value and the key, excluding the Expire memory usage of the key. // The following is verified based on Redis 5.0.2. Results may differ in other Redis versions. 192.168.0.66:6379> set a "Hello, world!" OK 192.168.0.66:6379> memory usage a (integer) 58 192.168.0.66:6379> set abc "Hello, world!" OK 192.168.0.66:6379> memory usage abc (integer) 60 //After the key name length changes, the memory usage also changes. This indicates that the usage statistics contain the usage of the key. 192.168.0.66:6379> expire abc 1000000 (integer) 1 192.168.0.66:6379> memory usage abc (integer) 60 // After the expiration time is added, the memory usage remains unchanged. This indicates that the usage statistics do not contain the expire memory usage. 192.168.0.66:6379>
- 2. For hashes, lists, sets, and sorted sets, the **MEMORY USAGE** command samples statistics and provides the estimated memory usage.
 - Usage: memory usage keyset samples 1000

keyset indicates the key of a set, and 1000 indicates the number of samples.

stats

Returns the detailed memory usage of the current instance.

Usage: memory stats

127.0.0.1:6379[8]> memory stats

- 1) "peak.allocated"
- 2) (integer) 2412408
- 3) "total.allocated"
- 4) (integer) 2084720
- 5) "startup.allocated"

6) (integer) 824928 7) "replication.backlog"

The following table describes the meanings of some return items.

Table '	14-2	memory	stats
---------	------	--------	-------

Return Value	Description
peak.allocated	Peak memory allocated by the allocator during Redis instance running. It is the same as used_memory_peak of info memory .
total.allocated	The number of bytes allocated by the allocator. It is the same as used_memory of info memory
startup.allocated	Initial amount of memory consumed by Redis at startup in bytes.
replication.backlog	Size in bytes of the replication backlog. It is specified in the repl-backlog-size parameter. The default value is 1 MB .
clients.slaves	The total size in bytes of all replicas overheads.
clients.normal	The total size in bytes of all clients overheads.
overhead.total	The sum of all overheads. overhead.total is the total memory total.allocated allocated by the allocator minus the actual memory used for storing data.
keys.count	The total number of keys stored across all databases in the server.
keys.bytes-per-key	Average number of bytes occupied by each key. Note that the overhead is also allocated to each key. Therefore, this value does not indicate the average key length.
dataset.bytes	Memory bytes occupied by Redis data, that is, overhead.total subtracted from total.allocated
dataset.percentage	The percentage of dataset.bytes out of the net memory usage.
peak.percentage	The percentage of peak.allocated out of total.allocated .
fragmentation	Memory fragmentation rate.

doctor

Usage: memory doctor

If the value of **used_memory** (**total.allocated**) is less than 5 MB, **MEMORY DOCTOR** considers that the memory usage is too small and does not perform

further diagnosis. If any of the following conditions is met, Redis provides diagnosis results and suggestions:

- The peak allocated memory is greater than 1.5 times of the current total_allocated, that is, peak.allocated/total.allocated > 1.5, indicating that the memory fragmentation rate is high, and that the RSS is much larger than used_memory.
- 2. The value of high fragmentation/fragmentation is greater than 1.4, indicating that the memory fragmentation rate is high.
- 3. The average memory usage of each normal client is greater than 200 KB, indicating that the pipeline may be improperly used or the Pub/Sub client does not process messages in time.
- 4. The average memory usage of each slave client is greater than 10 MB, indicating that the write traffic of the master is too high.

purge

Usage: memory purge

Executes the **jemalloc** internal command to release the memory. The released objects include the memory that is occupied but not used by Redis processes, that is, memory fragments.

NOTE

MEMORY PURGE applies only to the Redis instance that uses jemalloc as the allocator.

Lazyfree

Problem

Redis is single-thread. When a time-consuming request is executed, all requests are queued. Before the request is completed, Redis cannot respond to other requests. As a result, performance problems may occur. One of the time-consuming requests is deleting a large key.

Principle

The Lazyfree feature of Redis 4.0 avoids the blockage caused by deleting large keys, ensuring performance and availability.

When deleting a key, Redis asynchronously releases the memory occupied by the key. The key release operation is processed in the sub-thread of the background I/O (BIO).

Usage

- 1. Active deletion
 - unlink

Similar to **DEL**, this command removes keys. If there are more than 64 elements to be deleted, the memory release operation is executed in an independent BIO thread. Therefore, the **UNLINK** command can delete a large key containing millions of elements in a short time.

- flushall/flushdb

An **ASYNC** option was added to **FLUSHALL** and **FLUSHDB** in order to let the entire dataset or a single database to be freed asynchronously.

2. Passive deletion: deletion of expired keys and eviction of large keys

There are four scenarios for passive deletion and each scenario corresponds to a parameter. These parameters are disabled by default.

lazyfree-lazy-eviction no // Whether to enable Lazyfree when the Redis memory usage reaches **maxmemory** and the eviction policy is set. lazyfree-lazy-expire no // Whether to enable Lazyfree when the key with TTL is going to expire. lazyfree-lazy-server-del no // An implicit **DEL** key is used when an existing key is processed. slave-lazy-flush no // Perform full data synchronization for the standby node. Before loading the RDB file of the master, the standby node executes the **FLUSHALL** command to clear its own data.

D NOTE

To enable these configurations, contact technical support.

Other New Commands

1. swapdb

Swaps two Redis databases. swapdb *dbindex1 dbindex2*

2. zlexcount

Returns the number of elements in the sorted set. **zlexcount** *key min max*

Memory and Performance Optimization

- 1. Compared to before, the same amount of data can be stored with less memory.
- 2. Used memory can be defragmented and gradually evicted.

14.1.3 New Features of DCS for Redis 5.0

DCS for Redis 5.0 is compatible with the new features of the open-source Redis 5.0, in addition to all the improvements and new commands in Redis 4.0.

Stream Data Structure

Stream is a new data type introduced with Redis 5.0. It supports message persistence and multicast.

Figure 14-1 shows the structure of a Redis stream, which allows messages to be appended to the stream.

Streams have the following features:

- 1. A stream can have multiple consumer groups.
- 2. Each consumer group contains a **Last_delivered_id** that points to the last consumed item (message) in the consumer group.
- 3. Each consumer group contains multiple consumers. All consumers share the **last_delivered_id** of the consumer group. A message can be consumed by only one consumer.
- 4. **pending_ids** in the consumer can be used to record the IDs of items that have been sent to the client, but have not been acknowledged.

5. For detailed comparison between stream and other Redis data structures, see **Table 14-3**.

Figure 14-1 Stream data structure

Table 14-3 Differences between streams and existing Redis data structures

ltem	Stream	List, Pub/Sub, Zset
Complexity of seeking items	O(log(N))	List: O(N)
Offset	Supported. Each item has a unique ID. The ID is not changed as other items are added or evicted.	List: Not supported. If an item is evicted, the latest item cannot be located.
Persistence	Supported. Streams are persisted to AOF and RDB files.	Pub/Sub: Not supported.
Consumer group	Supported.	Pub/Sub: Not supported.
Acknowledg ment	Supported.	Pub/Sub: Not supported.
Performance	Not related to the number of consumers.	Pub/Sub: Positively related to the number of clients.

Item Stream		List, Pub/Sub, Zset		
Eviction	Streams are memory efficient by blocking to evict the data that is too old and using a radix tree and listpack.	Zset consumes more memory because it does not support inserting same items, blocking, or evicting data		
Randomly deleting items	Not supported.	Zset: Supported.		

Stream commands

Stream commands are described below in the order they are used. For details, see **Table 14-4**.

- 1. Run the **XADD** command to add a stream item, that is, create a stream. The maximum number of messages that can be saved can be specified when adding the item.
- 2. Create a consumer group by running the **XGROUP** command.
- 3. A consumer uses the **XREADGROUP** command to consume messages.
- 4. After the consumption, the client runs the **XACK** command to confirm that the consumption is successful.

Figure 14-2 Stream commands

Table 14-4 Stream commands description

Command	Description	Syntax
ХАСК	Deletes one or multiple messages from the <i>pending entry list</i> (PEL) a consumer group of the stream.	XACK key group ID [ID]
XADD	Adds a specified entry to the stream at a specified key. If the key does not exist, running this command will result in a key to be automatically created based on the entry.	XADD key ID field string [field string]

Command	Description	Syntax
XCLAIM	Changes the ownership of a pending message, so that the new owner is the consumer specified as the command argument.	XCLAIM key group consumer min-idle-time ID [ID] [IDLE ms] [TIME ms-unix-time] [RETRYCOUNT count] [FORCE] [JUSTID]
XDEL	Removes the specified entries from a stream, and returns the number of entries deleted, that may be different from the number of IDs passed to the command in case certain IDs do not exist.	XDEL key ID [ID]
XGROUP	 Manages the consumer groups associated with a stream You can use XGROUP to: Create a new consumer group associated with a stream. Destroy a consumer group. Remove a specified consumer from a consumer group. Set the consumer group <i>last</i> <i>delivery ID</i> to something else. 	XGROUP [CREATE key groupname id-or-\$] [SETID key id-or-\$] [DESTROY key groupname] [DELCONSUMER key groupname consumername]
XINFO	Retrieves different information about the streams and associated consumer groups.	XINFO [CONSUMERS key groupname] key key [HELP]
XLEN	Returns the number of entries in a stream. If the specified key does not exist, 0 is returned, indicating an empty stream.	XLEN key
XPENDING	Obtains data from a stream through a consumer group. This command is the interface to inspect the list of pending messages in order to observe and understand what clients are active, what messages are pending to be consumed, or to see if there are idle messages.	XPENDING key group [start end count] [consumer]
XRANGE Returns entries matching a given range of IDs.		XRANGE key start end [COUNT count]
XREADReads data from one or multiple streams, only returning entries with an ID greater than the last received ID reported by the caller.		XREAD [COUNT count] [BLOCK milliseconds] STREAMS key [key] ID [ID]

Command	Description	Syntax
XREADGROU P	A special version of the XREAD command, which is used to specify a consumer group to read from.	XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] STREAMS key [key] ID [ID]
XREVRANGE	This command is exactly like XRANGE , but with the notable difference of returning the entries in reverse order, and also taking the start-end range in reverse order.	XREVRANGE key end start [COUNT count]
XTRIM	Trims the stream to a specified number of items, if necessary, evicting old items (items with lower IDs).	XTRIM key MAXLEN [~] count

Message (stream item) acknowledgement

Compared with Pub/Sub, streams not only support consumer groups, but also message acknowledgement.

When a consumer invokes the **XREADGROUP** command to read or invokes the **XCLAIM** command to take over a message, the server does not know whether the message is processed at least once. Therefore, once having successfully processed a message, the consumer should invoke the **XACK** command to notify the stream so that the message will not be processed again. In addition, the message is removed from PEL and the memory will be released from the Redis server.

In some cases, such as network faults, the client does not invoke **XACK** after consumption. In such cases, the item ID is retained in PEL. After the client is reconnected, set the start message ID of **XREADGROUP** to 0-0, indicating that all PEL messages and messages after **last_id** are read. In addition, repeated message transmission must be supported when consumers consume messages.

Memory Usage Optimization

The memory usage of Redis 5.0 is optimized based on the previous version.

• Active defragmentation

If a key is modified frequently and the value length changes constantly, Redis will allocate additional memory for the key. To achieve high performance, Redis uses the memory allocator to manage memory. Memory is not always freed up to the OS. As a result, memory fragments occur. If the fragmentation ratio (**used_memory_rss/used_memory**) is greater than 1.5, the memory usage is inefficient.

To reduce memory fragments, properly plan and use cache data and standardize data writing.

For Redis 3.0 and earlier versions, memory fragmentation problems are resolved by restarting the process regularly. It is recommended that the actual cache data does not exceed 50% of the available memory.

For Redis 4.0, active defragmentation is supported, and memory is defragmented while online. In addition, Redis 4.0 supports manual memory defragmentation by running the **memory purge** command.

For Redis 5.0, improved active defragmentation is supported with the updated Jemalloc, which is faster, more intelligent, and provides lower latency.

• HyperLogLog implementation improvements

A HyperLogLog is a probabilistic data structure used to calculate the cardinality of a set while consuming little memory. Redis 5.0 improves HyperLogLog by further optimizing its memory usage.

For example: the B-tree is efficient in counting, but consumes a lot of memory. By using HyperLogLog, a lot of memory can be saved. While the B-tree requires 1 MB memory for counting, HyperLogLog needs only 1 KB.

• Enhanced memory statistics The information returned by the **INFO** command is more detailed.

New and Better Commands

1. Enhanced client management

- redis-cli supports cluster management.

In Redis 4.0 and earlier versions, the **redis-trib** module needs to be installed to manage clusters.

Redis 5.0 optimizes redis-cli, integrating all cluster management functions. You can run the **redis-cli --cluster help** command for more information.

The client performance is enhanced in frequent connection and disconnection scenarios.

This optimization is valuable when your application needs to use short connections.

2. Simpler use of sorted sets

ZPOPMIN and **ZPOPMAX** commands are added for sorted sets.

ZPOPMIN key [count]

Removes and returns up to **count** members with the lowest scores in the sorted set stored at **key**. When returning multiple elements, the one with

the lowest score will be the first, followed by the elements with higher scores.

ZPOPMAX key [count]

Removes and returns up to **count** members with the highest scores in the sorted set stored at **key**. When returning multiple elements, the one with the lowest score will be the first, followed by the elements with lower scores.

3. More sub-commands added to the help command

The **help** command can be used to view help information, saving you the trouble of visiting **redis.io** every time. For example, run the following command to view the stream help information: **xinfo help**

```
127.0.0.1:6379> xinfo help1) XINFO <subcommand> arg arg ... arg. Subcommands are:2) CONSUMERS <key> <groupname> -- Show consumer groups of group <groupname>.3) GROUPS <key> -- Show the stream consumer groups.4) STREAM <key> -- Show information about the stream.5) HELP -- Print this help.127.0.0.1:6379>
```

4. redis-cli command input tips

After you enter a complete command, redis-cli displays a parameter tip to help you memorize the syntax format of the command.

As shown in the following figure, run the **zadd** command, and redis-cli displays **zadd** syntax in light color.

```
# Cluster
cluster_enabled:0
# Keyspace
db0:keys=1,expires=0,avg_ttl=0
198.19.59.199:6379> zadd key [NX[XX] [CH] [INCR] score member [score member ...]
```

RDB Storing LFU and LRU Information

In Redis 5.0, storage key eviction policies **LRU** and **LFU** were added to the RDB snapshot file.

- FIFO: First in, first out. The earliest stored data is evicted first.
- LRU: Least recently used. Data that is not used for a long time is evicted first.
- LFU: Least frequently used. Data that is least frequently used is evicted first.

The RDB file format of Redis 5.0 is modified and is backward compatible. Therefore, if a snapshot is used for migration, data can be migrated from the earlier Redis versions to Redis 5.0, but cannot be migrated from the Redis 5.0 to the earlier versions.

14.1.4 What Are the CPU Specifications of DCS Instances?

When using DCS, you only need to pay attention to critical indicators such as QPS, bandwidth, and memory. You do not need to be concerned about CPU specifications.

DCS for Redis is based on open-source Redis. Open-source Redis uses a single main thread to process commands, so only one CPU core is used on each Redis node.

Due to this restriction, you can use a cluster and add shards to achieve higher CPU performance. Each node in a cluster instance is allocated one CPU core by default.

14.1.5 How Do I View the Version of a DCS Redis Instance?

Connect to the instance and run the **INFO** command.

Figure 14-4 Querying instance information

> INFO
Server
redis_version:5.0.14
patch_version:5.0.14.1
redis_git_sha1:0000000
redis git dirtv:0

14.2 Client and Network Connection

14.2.1 Security Group Configurations

DCS helps you control access to your DCS instances in the following ways, depending on the deployment mode:

- To control access to DCS Redis 3.0 instances, you can use security groups. Whitelists are not supported. Security group operations are described in this section.
- To control access to DCS Redis 4.0/5.0/6.0 instances, you can use whitelists. Security groups are not supported. Whitelist operations are described in Managing IP Address Whitelist.

The following describes how to configure security groups for **intra-VPC access** to DCS Redis 3.0 instances and public access to DCS Redis 3.0 instances.

Intra-VPC Access to DCS Redis 3.0 Instances

An ECS can communicate with a DCS instance if they belong to the same VPC and security group rules are configured correctly.

In addition, you must configure correct rules for the security groups of both the ECS and DCS instance so that you can access the instance through your client.

- If the ECS and DCS instance are configured with the same security group, network access in the group is not restricted by default.
- If the ECS and DCS instance are configured with different security groups, add security group rules to ensure that the ECS and DCS instance can access each other.

D NOTE

- Suppose that the ECS on which the client runs belongs to security group **sg-ECS**, and the DCS instance that the client will access belongs to security group **sg-DCS**.
- Suppose that the port number of the DCS service is 6379.
- The remote end is a security group or an IP address.
- a. Configuring security group for the ECS.

Add the following outbound rule to allow the ECS to access the DCS instance. Skip this rule if there are no restrictions on the outbound traffic.

<	sg-ECS					
Sum	nmary In	bound Rules	Outbound Rules	Associated Instances		
	Add Rule	Fast-Add Rule	Delete A	Ilow Common Ports Outbound Rt	iles: 2 Learn more about se	curity group configuration.
	マ Specify fil	ter criteria.				
	Priorit	y ⑦ Action	0	Protocol & Port (?)	Туре	Destination (?)
	1	Allow		TCP : All	IPv4	sg-DCS 🕐
	1	Allow		All	IPv4	0.0.0.0/0 ⑦

b. Configuring security group for the DCS instance.

To ensure that your client can access the DCS instance, add the following inbound rule to the security group configured for the DCS instance:

<	sg-DC S				
Su	mmary Inbound Ri	ules Outbound Rul	les Associated Instances		
	Add Rule Fast	-Add Rule Delete	Allow Common Ports Inbound Rules	s: 3 Learn more about secu	rity group configuration.
	♥ Specify filter criteri	а.			
	Priority	Action ⑦	Protocol & Port (?)	Туре	Source (?)
	1	Allow	TCP : 6379	IPv4	sg-ECS ⑦
	1	Allow	All	IPv4	sg-DCS 🕐

NOTICE

In the inbound rule of the security group configured for the DCS instance, set the remote end to an IP address in the same CIDR block as the subnet.

To prevent ECSs bound with same security group as the DCS instance from being attacked by Redis vulnerabilities, exercise caution when using **0.0.0.0/0**.

Public Access to DCS Redis 3.0 Instances

A client can access a DCS instance only after rules are correctly configured for the security group of the instance.

For example, for security group **sg-DCS**, you need to configure the following rules in the inbound direction:

Set the protocol to TCP and source IP address to 0.0.0.0/0 or a specified client address. If SSL is enabled, set the port number to 36379. If SSL is disabled, set the port number to 6379. See the following figure.

Figure 14-5 Security group rule (port 36379 is used for the example)

< sg-DCS					
Summary	Inbound Rules	Outbound Rules As	ssociated Instances		
Add Rule	Fast-Add Rule	Delete Allow	Common Ports Inbound Rules: 3	Learn more about security group config	guration.
Prio	rity ? Action	0	Protocol & Port (?)	Туре	Source ?
1	Allow		TCP : 36379	IPv4	0.0.0.0/0 ⑦
1	Allow		All	IPv4	sg-DCS

14.2.2 Does DCS Support Access?

Redis 3.0

Currently, public access is supported only by password-protected DCS Redis 3.0 instances. You can enable or disable SSL for public access. You are advised to download a CA certificate in advance and use it to verify the certificate of a DCS instance for security purposes. For details, see **Public Access to a DCS Redis 3.0 Instance**.

Redis 4.0/5.0/6.0

No. DCS instances cannot be access at their EIPs. To ensure security, the ECS that serves as a client and the DCS instance that the client will access must belong to the same VPC.

14.2.3 Does DCS Support Cross-VPC Access?

Cross-VPC means the client and the instance are not in the same VPC.

Generally, VPCs are isolated from each other and ECSs cannot access DCS instances that belong to a different VPC from these ECSs.

However, by establishing VPC peering connections between VPCs, ECSs can access single-node and master/standby DCS instances across VPCs.

When using VPC peering connections to access DCS instances across VPCs, adhere to the following rules:

- If network segments 172.16.0.0/12 to 172.16.0.0/24 are used during DCS instance creation, the client cannot be in any of the following network segments: 192.168.1.0/24, 192.168.2.0/24, and 192.168.3.0/24.
- If network segments 192.168.0.0/16 to 192.168.0.0/24 are used during DCS instance creation, the client cannot be in any of the following network segments: 172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.
- If network segments 10.0.0.0/8 to 10.0.0.0/24 are used during DCS instance creation, the client cannot be in any of the following network segments: 172.31.1.0/24, 172.31.2.0/24, and 172.31.3.0/24.

For more information about VPC peering connection, see "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.

NOTICE

Cluster DCS Redis instances do not support cross-VPC access. ECSs in a VPC cannot access cluster DCS instances in another VPC by using VPC peering connections.

14.2.4 Why Is "(error) NOAUTH Authentication required" Displayed When I Access a DCS Redis Instance?

This is because you have enabled password-free access for the instance. To prevent the error message from appearing, do not enter any password.

14.2.5 What Should I Do If Access to DCS Fails After Server Disconnects?

Analysis: If persistent connections ("pconnect" in Redis terminology) or connection pooling is used and connections are closed after being used for connecting to DCS instances, errors will be returned at attempts to reuse the connections.

Solution: When using pconnect or connection pooling, do not close the connection after the end of a request. If the connection is dropped, re-establish it.

14.2.6 Why Do Requests Sometimes Time Out in Clients?

Occasional timeout errors are normal because of network connectivity and client timeout configurations.

You are advised to include reconnection operations into your service code to avoid service failure if a single request fails.

If a connection request times out, check if AOF persistence has been enabled. To avoid blocking, ensure that AOF has been enabled.

If timeout errors occur frequently, contact O&M personnel.

14.2.7 What Should I Do If an Error Is Returned When I Use the Jedis Connection Pool?

The error message that will possibly be displayed when you use the Jedis connection pool is as follows:

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool

If this error message is displayed, check whether your instance is running properly. If it is running properly, perform the following checks:

Step 1 Network

1. Check the IP address configurations.

Check whether the IP address configured on the Jedis client is the same as the subnet address configured for your DCS instance. If public access is enabled

for your instance, check whether the IP address configured on the Jedis client is the same as the EIP bound to your instance. If they are inconsistent, modify the IP address configuration and then try again.

2. Test the network.

Use the ping command and telnet on the client to test the network.

- If the network cannot be pinged:

For intra-VPC access to a DCS Redis 3.0 instance, ensure that the client and your DCS instance belong to the same VPC and security group, or the security group of your DCS instance allows access through port 6379. For details, see **Security Group Configurations**.

For public access with SSL encryption, ensure that you have configured the security group of your DCS instance, **allowing access through port 36379**.

For public access without SSL encryption, ensure that you have configured the security group of your DCS instance, **allowing access through port 6379**.

- If the IP address can be pinged but telnet failed, restart your instance. If the problem persists after the restart, contact technical support.
- **Step 2** Check the number of connections.

Check whether the number of established network connections exceeds the upper limit configured for the Jedis connection pool. If the number of established connections approaches the configured upper limit, restart the DCS service and check whether the problem persists. If the number of established connections is far below the upper limit, continue with the following checks.

In Unix or Linux, run the following command to query the number of established network connections:

netstat -an | grep 6379 | grep ESTABLISHED | wc -l

In Windows, run the following command to query the number of established network connections:

netstat -an | find "6379" | find "ESTABLISHED" /C

Step 3 Check the JedisPool code.

If the number of established connections approaches the upper limit, determine whether the problem is caused by service concurrency or incorrect usage of JedisPool.

When using JedisPool, you must call **jedisPool.returnResource()** or **jedis.close()** (recommended) to release the resources after you call **jedisPool.getResource()**.

Step 4 Check the number of TIME_WAIT connections.

Run the **ss** -**s** command to check whether there are too many **TIME_WAIT** connections on the client.

root@heru- Total: 140 TCP: 11	-nodelete:^) (kernel 2 (estab 3,	≓# ss -s 240) closed 1,	orphaned 0), synr	ecv 0,	timewait	0/0),	ports	0
Transport	Total	IP	IPv6						
*	240								
RAW									
UDP									
TCP	10								
INET	12								
FRAG									

If there are too many **TIME_WAIT** connections, modify the kernel parameters by running the **/etc/sysctl.conf** command as follows:

##Uses cookies to prevent some SYN flood attacks when the SYN waiting queue overflows.
net.ipv4.tcp_syncookies = 1
##Reuses TIME_WAIT sockets for new TCP connections.
net.ipv4.tcp_tw_reuse = 1
##Enables quick reclamation of TIME_WAIT sockets in TCP connections.
net.ipv4.tcp_tw_recycle = 1
##Modifies the default timeout time of the system.
net.ipv4.tcp_fin_timeout = 30

After the modification, run the **/sbin/sysctl -p** command for the modification to take effect.

Step 5 If the problem persists after you perform the preceding checks, perform the following steps.

Capture packets and send packet files along with the time and description of the exception to technical support for analysis.

Run the following command to capture packets:

tcpdump -i eth0 tcp and port 6379 -n -nn -s 74 -w dump.pcap

In Windows, you can also install the Wireshark tool to capture packets.

NOTE

Replace the NIC name to the actual one. For public access, change the port number to **36379**.

----End

14.2.8 Why Is "ERR unknown command" Displayed When I Access a DCS Redis Instance Through a Redis Client?

The possible causes are as follows:

1. The command is spelled incorrectly.

As shown in the following figure, the error message is returned because the correct command for deleting a string should be **del**.

192.168.0.244:6379> delete hellokitty (error) ERR unknown command 'delete' 192.168.0.244:6379> del hellokitty (integer) 1 192.168.0.244:6379> 2. A command available in a higher Redis version is run in a lower Redis version. As shown in the following figure, the error message is returned because a stream command (available in Redis 5.0) is run in Redis 3.0.

3. Some commands are disabled.

DCS Redis instance interfaces are fully compatible with the open-source Redis in terms of data access. However, for ease of use and security purposes, some operations cannot be initiated through Redis clients. For details about disabled commands, see **Command Compatibility**.

14.2.9 How Do I Access a DCS Redis Instance Through Redis Desktop Manager?

You can access a DCS Redis instance through the Redis Desktop Manager within a VPC.

- 1. Enter the address, port number (6379), and authentication password of the DCS instance you want to access.
- 2. Click **Test Connection**.

The system displays a success message if the connection is successful.

Figure 14-6 Accessing a DCS Redis instance through Redis Desktop Manager over the intranet

D NOTE

When accessing a cluster DCS instance, the Redis command is run properly, but an error message may display on the left because DCS clusters are based on Codis, which differs from the native Redis in terms of the **INFO** command output.

You can access a DCS Redis 3.0 instance through the Redis Desktop Manager over a public network.

Check whether SSL is enabled for the DCS instance you want to access.

- If SSL is not enabled, enter the public access address of the instance. Configure the **inbound** rule of the security group of the instance,
- allowing access over port **6379**.
- If SSL is enabled, install the Stunnel client first and then connect to the Redis server through Redis Desktop Manager. Pay attention to the following:
 - The Stunnel client must be installed. For details about how to install and configure the Stunnel client, see Stunnel instructions.
 - The address must be set to 127.0.0.1 rather than the public IP address. Otherwise, "connection reset" will be returned.

When SSL is enabled, Redis is accessed through an encrypted channel established by Stunnel. After a request is sent from Redis Desktop Manager to the listening port of 127.0.0.1, the request is encrypted and sent to the Redis instance through port 36379 over a public network.

Configure the inbound rule of the security group of the instance, allowing access over port 36379.

To enable SSL, disable public access first. Then, enable SSL while re-enabling public access. To disable SSL, disable public access first. Then, disable SSL while re-enabling public access.

14.2.10 What If "ERR Unsupported CONFIG subcommand" is Displayed in SpringCloud?

By using DCS Redis instances, Spring Session can implement session sharing. When interconnecting with Spring Cloud, the following error information is displayed:

знесрье	configuration.classj: invocation of init method falled; nested exception is org.springframework.dao.invalidUataAccessApiUsagetxCeption: Erk Unsupported CUNFIG subcommand; nested exceptio
dis.cli	edis.exceptions.JedisDataException: ERR Unsupported CONFIG subcommand
2019-02):36:59 INFO com.alibaba.druid.pool.DruidDataSource - {dataSource-2} closed
2019-02	1:36:59 INFO com.alibaba.druid.pool.DruidDataSource - {dataSource-1} closed
2019-02):36:59 ERROR org.springframework.web.context.ContextLoader - Context initialization failed
org. spr	umework.beans.factory.BeanCreationException: Error creating bean with name 'enableRedisKeyspaceNotificationsInitializer' defined in class path resource [org/springframework/session/data/
onfig/a	:ion/web/http/RedisHttpSessionConfiguration.class]: Invocation of init method failed: nested exception is org.springframework.dao.InvalidDataAccessApiUsageException: ERR Unsupported CONF
ommand;	ed exception is redis.clients.jedis.exceptions.JedisDataException: ERR Unsupported CONFIG subcommand
	g.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1704)
	ng.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:583)
	rg.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:502)
	ng.springframework.beans.factory.support.AbstractBeanFactory.lambda\$doGetBean\$0(AbstractBeanFactory.java:312)
	rg.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:228)
	rg.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:310)
	ng.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:200)
	rg.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:756)
	ng.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:868)
	n springframework context support AbstractApplicationContext refresh(AbstractApplicationContext java:549)

Figure 14-7 Spring Cloud error information

For security purposes, DCS does not support the **CONFIG** command initiated by a client. You need to perform the following steps:

1. On the DCS console, set the value of the **notify-keyspace-event** parameter to **Egx** for a DCS Redis instance.
2. Add the following content to the XML configuration file of the Spring framework:

<util:constant

static-

field="org.springframework.session.data.redis.config.ConfigureRedisAction.NO _OP"/>

Modify the related Spring code. Enable the ConfigureRedisAction.NO_OP bean component to forbid a client to invoke the CONFIG command.
 @Bean

public static ConfigureRedisAction configureRedisAction() {
return ConfigureRedisAction.NO_OP;

}

For more information, see the **Spring Session Documentation**.

NOTICE

Session sharing is supported only by **single-node** and **master/standby** DCS Redis instances, but not by cluster DCS Redis instances.

14.2.11 Is a Password Required for Accessing an Instance? How Do I Set a Password?

- A DCS Redis instance can be access with or without a password. You can directly access a DCS Redis instance through a Redis client without setting a password. However, for security purposes, you are advised to set a password for authentication and verification whenever possible. The password must be set when you create the instance.
- To change the Redis instance access mode, or change or reset a password, see Managing Passwords.

14.2.12 Can I Access DCS Instances in a Local Environment?

- If public access is disabled for a DCS instance, you cannot access it in local environments and can only access it through an ECS in a VPC that can communicate with the instance. VPCs are used to ensure network security of services.
- If public access is enabled, DCS instances can be accessed in local environments. For more information, see Public Access to a DCS Redis 3.0 Instance.

14.2.13 What Should Be Noted When Using Redis for Pub/ Sub?

Pay attention to the following issues when using Redis for pub/sub:

- Your client must process messages in a timely manner.
 - Your client subscribes to a channel. If it does not receive messages in a timely manner, DCS instance messages may be overstocked. If the size of

accumulated messages reaches the threshold (32 MB by default) or remains at a certain level (8 MB by default) for a certain period of time (1 minute by default), your client will be automatically disconnected to prevent server memory exhaustion.

• Your client must support connection re-establishment in case of disconnection.

In the event of a disconnection, you need to run the **subscribe** or **psubscribe** command on your client to subscribe to a channel again. Otherwise, your client cannot receive messages.

• Do not use pub/sub in scenarios with high message reliability requirements.

The Redis pub/sub is not a reliable messaging system. Messages that are not retrieved will be discarded when your client is disconnected or a master/ standby switchover occurs.

14.2.14 How Do I Troubleshoot Redis Connection Failures?

Preliminary checks:

• Check the connection address.

Obtain the connection address from the instance basic information page on the DCS console.

• Check the instance password.

If the instance password is incorrect, the port can still be accessed but the authentication will fail.

Check the port.

Port 6379 is the default port used in intra-VPC access to a DCS Redis instance.

• Check if the maximum bandwidth has been reached.

If the bandwidth reaches the maximum bandwidth for the corresponding instance specifications, Redis connections may time out.

• For a DCS Redis 3.0 instance, check the inbound access rules of the security group.

Intra-VPC access: If the Redis client and the Redis instance are bound with different security groups, allow inbound access over port 6379 for the security group of the instance.

For details, see Security Group Configurations.

• For a DCS Redis 4.0/5.0/6.0 instance, check the whitelist configuration.

If the instance has a whitelist, ensure that the client IP address is included in the whitelist. Otherwise, the connection will fail.

For details, see Managing IP Address Whitelist.

If the client IP address has changed, add the new IP address to the whitelist.

• Check the configuration parameter **notify-keyspace-events**. Set **notify-keyspace-events** to **Egx**.

Further checks:

- Jedis connection pool error
- Error "Read timed out" or "Could not get a resource from the pool"

Check if the **KEYS** command has been used. This command consumes a lot of resources and can easily block Redis. Instead, use the **SCAN** command and avoid executing the command frequently.

14.2.15 What Can I Do If Error "Cannot assign requested address" Is Returned When I Access Redis Using connect?

Symptom

Error message "Cannot assign requested address" is returned when you access Redis using **connect**.

Analysis

Applications that encounter this error typically use php-fpm and phpredis. In highconcurrency scenarios, a large number of TCP connections are in the TIME-WAIT state. As a result, the client cannot allocate new ports and the error message will be returned.

Solutions

• Solution 1: Use **pconnect** instead of **connect**.

Using **pconnect** reduces the number of TCP connections and prevents connections from being re-established for each request, and therefore reduces latency.

When using **connect**, the code for connecting to Redis is as follows:

\$redis->connect('\${Hostname}',\${Port});
\$redis->auth('\${Inst_Password}');

Replace **connect** with **pconnect**, and the code becomes:

\$redis->pconnect('\${Hostname}', \${Port}, 0, NULL, 0, 0, ['auth' => ['\${Inst_Password}']]);

- Replace the connection parameters in the example with actual values. *\$* {*Hostname*}, *\$*{*Port*}, and *\$*{*Inst_Password*} are the connection address, port number, and password of the Redis instance, respectively.
- phpredis must be v5.3.0 or later. You are advised to use this **pconnect** initialization mode to avoid NOAUTH errors during disconnection.
- Solution 2: Modify the tcp_max_tw_buckets parameter of the ECS where the client is located.

In this solution, the ports used by TIME-WAIT connections are reused. However, if retransmission occurs between the ECS and the backend service, the connection may fail. Therefore, the **pconnect** solution is recommended.

- a. Connect to the ECS where the client is located
- b. Run the following command to check the **ip_local_port_range** and **tcp_max_tw_buckets** parameters:

sysctl net.ipv4.tcp_max_tw_buckets net.ipv4.ip_local_port_range

Information similar to the following is displayed:

net.ipv4.tcp_max_tw_buckets = 262144 net.ipv4.ip_local_port_range = 32768 61000 c. Run the following command to set the **tcp_max_tw_buckets** parameter to a value smaller than the value of **ip_local_port_range**:

sysctl -w net.ipv4.tcp_max_tw_buckets=10000

Generally, solution 1 is recommended. In special scenarios (for example, the service code involves too many components and is difficult to change), solution 2 can be used to meet high concurrency requirements.

14.2.16 Connection Pool Selection and Recommended Jedis Parameter Settings

Advantages of the Jedis Connection Pool

The comparison between Lettuce and Jedis is as follows:

- Lettuce
 - Lettuce does not perform connection keepalive detection. If an abnormal connection exists in the connection pool, an error is reported when requests time out.
 - Lettuce does not implement connection pool validation such as testOnBorrow. As a result, connections cannot be validated before being used.
- Jedis
 - Jedis implements connection pool validation using testOnBorrow, testWhileIdle, and testOnReturn.

If **testOnBorrow** is enabled, connection validation is performed when connections are being borrowed, which has the highest reliability but affects the performance (detection is performed before each Redis request).

- testWhileIdle can be used to detect idle connections. If the threshold is set properly, abnormal connections in the connection pool can be removed in time to prevent service errors caused by abnormal connections.
- If a connection becomes abnormal before the idle connection check, the service that uses the connection may report an error. You can specify the timeBetweenEvictionRunsMillis parameter to control the check interval.

Therefore, Jedis has better exception handling and detection capabilities and is more reliable than Lettuce in scenarios where there are connection exceptions and network jitters.

Recommended Jedis Connection Pool Parameter Settings

Parameter	Description	Recommended Setting
maxTotal	Maximum number of connections	Set this parameter based on the number of HTTP threads of the web container and reserved connections. Assume that the maxConnections parameter of the Tomcat Connector is set to 150 and each HTTP request may concurrently send two requests to Redis, you are advised to set this parameter to at least 400 (150 x 2 + 100).
		Limit: The value of maxTotal multiplied by the number of client nodes (CCE containers or service VMs) must be less than the maximum number of connections allowed for a single DCS Redis instance.
		For example, if maxClients of a master/ standby DCS Redis instance is 10,000 and maxTotal of a single client is 500, the maximum number of clients is 20.
maxIdle	Maximum number of idle connections	Set this parameter to the value of maxTotal .

Table	14-5	Recommended	Jedis	connection	pool	parameter	settings
						1	5

Parameter	Description	Recommended Setting
minIdle	Minimum number of idle connections	Generally, you are advised to set this parameter to 1/X of maxTotal . For example, the recommended value is 100 . In performance-sensitive scenarios, you can set this parameter to the
		value of maxIdle to prevent the impact caused by frequent connection quantity changes. For example, set this parameter to 400 .
maxWaitMillis	Maximum waiting time for obtaining a connection, in milliseconds	The recommended maximum waiting time for obtaining a connection from the connection pool is the maximum tolerable timeout of a single service minus the timeout for command execution. For example, if the maximum tolerable HTTP timeout is 15s and the timeout of Redis requests is 10s, set this parameter to 5s.
timeout	Command execution timeout, in milliseconds	This parameter indicates the maximum timeout for running a Redis command. Set this parameter based on the service logic. Generally, you are advised to set this timeout to longer than 210 ms to ensure network fault tolerance. For special detection logic or environment exception detection, you can adjust this timeout to seconds.

Parameter	Description	Recommended Setting
minEvictableIdleTimeMil- lis	Idle connection eviction time, in milliseconds. If a connection is not used for a period longer than this, it will be released.	If you do not want the system to frequently re- establish disconnected connections, set this parameter to a large value (xx minutes) or set this parameter to -1 and check idle connections periodically.
timeBetweenEviction- RunsMillis	Interval for detecting idle connections, in milliseconds	The value is estimated based on the number of idle connections in the system. For example, if this interval is set to 30s, the system detects connections every 30s. If an abnormal connection is detected within 30s, it will be removed. Set this parameter based on the number of connections. If the number of connections is too large and this interval is too short, request resources will be wasted. If there are hundreds of connections, you are advised to set this parameter to 30s. The value can be dynamically adjusted based on system requirements.
testOnBorrow	Indicates whether to check the connection validity using the ping command when borrowing connections from the resource pool. Invalid connections will be removed.	If your service is extremely sensitive to connections and the performance is acceptable, you can set this parameter to True . Generally, you are advised to set this parameter to False to enable idle connection detection.

Parameter	Description	Recommended Setting
testWhileIdle	Indicates whether to use the ping command to monitor the connection validity during idle resource monitoring. Invalid connections will be destroyed.	True
testOnReturn	Indicates whether to check the connection validity using the ping command when returning connections to the resource pool. Invalid connections will be removed.	False
maxAttempts	Number of connection retries when JedisCluster is used	Recommended value: 3– 5. Default value: 5 . Set this parameter based on the maximum timeout intervals of service APIs and a single request. The maximum value is 10 . If the value exceeds 10 , the processing time of a single request is too long, blocking other requests.

14.2.17 Should I Use a Domain Name or an IP Address to Connect to a DCS Redis Instance?

• Single-node and Proxy Cluster:

Each instance has only one IP address and one domain name address. The addresses remain unchanged before and after master/standby switchover. You can use either address to connect to the instance.

• Master/standby:

Each instance has one IP address and two domain name addresses. One of the domain name addresses is used only for processing read requests. The addresses remain unchanged after master/standby switchover. You can use any address to connect to the instance.

When you use a domain name address, distinguish between read and write requests. If you use **Connection Address** or **IP Address**, functions are not affected. If you use **Read-only Address**, only read requests are processed.

• Redis Cluster:

A Redis Cluster instance has multiple pairs of master and replica IP addresses and one domain name address. You can use any address to connect to the instance.

The connected node sends requests to the correct node. All nodes in the cluster can receive requests. **Configure multiple or all IP addresses** to prevent single points of failure.

NOTE

- Domain names cannot be resolved across regions. If the client and the DCS Redis instance are not in the same region, the instance cannot be accessed using its domain name address. You can manually map the domain name to the IP address in the **hosts** file or access the instance using its IP address. For details, see **Restrictions**.
- For details about how to connect to an instance, see Accessing an Instance.

14.2.18 Is the Read-only Address of a Master/Standby Instance Connected to the Master or Standby Node?

A master/standby DCS Redis 4.0/5.0/6.0 instance has a **Connection Address** and a **Read-only Address**. The connection address is used to connect to the master node of the instance, and the read-only address is used to connect to the standby node of the instance.

For details, see Architecture of Master/Standby DCS Redis 4.0/5.0/6.0 Instances.

Figure 14-8 Instance addresses

Connection ⑦		
Password Protected	No	
Connection Address	redis-3b1cee0c-fdc8-4662-94d0-06e26	.com:6379 🗖 🖉
Read-only Address	redis-3b1cee0c-fdc8-4662-94d0-06e2ea	.com:6379 🗖
IP Address	10.0.0.146:6379 🗇	

14.3 Redis Usage

14.3.1 What Are Shard and Replica Quantities?

Shard

A **shard** is a management unit in Redis clusters. Each shard corresponds to a redisserver process. A cluster consists of multiple shards. Each shard has multiple slots. Data is distributedly stored in the slots. Shards increase cache capacity and concurrent connections.

Each cluster instance consists of multiple shards. By default, each shard is a master/standby instance with two replicas. The number of shards is equal to the number of master nodes in a cluster instance.

Replica

A replica refers to a **node** of a DCS instance. It can be a master node or a standby node. A single-replica instance has no standby node. A two-replica instance has one master node and one standby node. For example, if the number of replicas is set to three for a master/standby instance, the instance has one master node and two standby nodes.

Number of Replicas and Shards of Different Instance Types

- **Single-node**: Each instance has only one node (one Redis process). If the Redis process is faulty, DCS starts a new Redis process for the instance.
- **Master/standby**: Each instance has one shard, which contains one master node and one or more standby nodes. If the master node is faulty, master/ standby switchover is triggered to restore services. The more the replicas (standby nodes), the better the reliability (performance is unaffected).
- **Cluster**: Each instance has multiple shards. By default, each shard is a master/ standby instance with two replicas. For example, if a cluster instance has three shards and three replicas, each shard has three nodes (one master node and two standby nodes).

Instance Type	Shards	Replicas	Load Balancing	IP Addresses
Single-node	1	-	-	1
Master/ standby	1	Default: 2; customizable : multiple	Not supported	Same as the number of replicas
Proxy Cluster	Multiple	2 (not customizable)	Supported	1
Redis Cluster	Multiple	Default: 2; customizable : one or multiple	Not supported	Number of replicas x Number of shards

14.3.2 Why Is CPU Usage of a DCS Redis Instance 100%?

• Possible cause 1:

The service QPS is so high that the CPU usage spikes to 100%.

• Possible cause 2:

You have run commands that consume a lot of resources, such as **KEYS**. This will make CPU usage spike and can easily trigger a master/standby switchover.

• Possible cause 3:

Redis rewrite was triggered, increasing CPU usage.

For details, see Troubleshooting High CPU Usage of a DCS Redis Instance.

14 FAQs

14.3.3 Can I Change the VPC and Subnet for a DCS Redis Instance?

No. Once an instance is created, its VPC and subnet cannot be changed. If you want to use a different set of VPC and subnet, create a same instance and specify a desired set of VPC and subnet. After the new instance is created, you can migrate data from the old instance to the new instance by following the **data migration instructions**.

14.3.4 Why Aren't Security Groups Configured for DCS Redis 4.0/5.0/6.0 Instances?

Currently, DCS Redis 4.0/5.0/6.0 instances use VPC endpoints and do not support security groups. You can configure whitelists instead. For details, see Managing IP Address Whitelist.

To allow access only from specific IP addresses to a DCS Redis instance, add the IP addresses to the instance whitelist.

If no whitelists are added to the instance whitelist or the whitelist function is disabled, all IP addresses that can communicate with the VPC can access the instance.

14.3.5 Do DCS Redis Instances Limit the Size of a Key or Value?

• The maximum allowed size of a key is 512 MB.

To reduce memory usage and facilitate key query, ensure that each key does not exceed 1 KB.

- The maximum allowed size of a string is 512 MB.
- The maximum allowed size of a Set, List, or Hash is 512 MB.

In essence, a Set is a collection of Strings; a List is a list of Strings; a Hash contains mappings between string fields and string values.

Prevent the client from constantly writing large values in Redis. Otherwise, network transmission efficiency will be lowered and the Redis server would take a longer time to process commands, resulting in higher latency.

14.3.6 Can I Obtain the Addresses of the Nodes in a Cluster DCS Redis Instance?

Cluster DCS Redis 3.0 instances (Proxy Cluster type) are used in the same way that you use single-node or master/standby instances. You do not need to know the backend node addresses.

For a cluster DCS Redis 4.0 or later instance (Redis Cluster type), run the **CLUSTER NODES** command to obtain node addresses:

redis-cli -h {redis_address} -p {redis_port} -a {redis_password} cluster nodes

In the output similar to the following, obtain the IP addresses and port numbers of all the master nodes.

14.3.7 Why Is Available Memory Smaller Than Instance Cache Size?

DCS Redis 3.0 instances are deployed on VMs and some memory is reserved for system overheads. This problem will not occur on other instance versions.

14.3.8 How Do I Configure Read/Write Splitting for a Redis Cluster Instance?

Configuration

• For a **Redis Cluster instance**, you can query all master and replica nodes by running the **CLUSTER NODES** command. The client will connect to replicas and configure read-only access on them.

Run the following command to query cluster nodes:

redis-cli -h {redis_address} -p {redis_port} -a {redis_password} cluster nodes

Read-only configuration on replicas is achieved through the **READONLY** command.

14.3.9 Does DCS for Redis Support Multi-DB?

DCS's support for multiple databases (multi-DB) is as follows:

- Single-node and master/standby DCS Redis instances: Multi-DB is supported. By default, there are 256 databases, numbering 0–255. The default database is DB0. Multi-DB is used for data isolation. The size of each database is not evenly allocated. As a result, one database may fully occupy the memory of the instance.
- Proxy Cluster: There is only one database by default.
 - For details about how to buy a Proxy Cluster instance with multiple databases, see How Do I Buy a Multi-DB Proxy Cluster Instance?
 - For details about how to enable multi-DB for a single-DB Proxy Cluster instance, see What Are the Constraints on Implementing Multiple Databases on a Proxy Cluster Instance?

D NOTE

Proxy Cluster DCS Redis 3.0 instances do not support multi-DB.

 Redis Cluster DCS instances: Multi-DB is not supported. There is only one database.

The number of databases cannot be changed, and the size of each database cannot be customized.

14.3.10 How Do I Know Whether an Instance Is Single-DB or Multi-DB?

Single-node, master/standby, and read/write splitting: multi-DB (256 DBs, numbered from 0 to 255)

Proxy Cluster: single-DB by default. Multi-DB can be enabled. For details, see What Are the Constraints on Implementing Multiple Databases on a Proxy Cluster Instance?

Redis Cluster: single-DB. Multi-DB is not supported.

You can connect to a DCS Redis 4.0 or later instance on the console to check whether it is multi-DB.

Figure 14-9 Connecting to Redis

Name J⊟	Status ↓Ξ	Cache Engine ↓Ξ	Туре	CPU	Specification (G $\downarrow \equiv$	Used/Available _ J∃	Connection Address	Tags	Billing Mode ⑦	Operation
dcs-jr0a 6a25ff88-5080-4ea2	😏 Running	Redis 5.0	Master/Standby	x86	0.125	2/128 (Pay-per-use	View Metric Restart More 🔺
dcs-r84c 1006c93c-229b-415c	Running	Redis 5.0	Single-node	x86	0.125	1/128 (Pay-per-use	Modify Specifications Connect to Redis Receit Descuered
dcs-dcstest ddc5344f-fdd1-4345	Running	Redis 3.0	Single-node	x86	2	3/1,536			Pay-per-use	Master/Standby Switchover
										Command Renaming Delete

Figure 14-10 Viewing databases

14.3.11 Does DCS for Redis Support Redis Clusters?

Yes. DCS for Redis 4.0 and 5.0 support Redis Clusters and Proxy Clusters. DCS for Redis 3.0 supports Proxy Clusters.

14.3.12 What Is Sentinel?

Overview

High availability in Redis is implemented through Sentinel. Sentinel helps you defend against certain types of faults without manual intervention, and complete tasks such as monitoring, notification, and client configuration. For details, see the **Redis official website**.

Principles

Redis Sentinel is a distributed system where multiple Sentinel processes work together. It has the following advantages:

- 1. Fault detection is performed only when multiple Sentinels agree that a master node is unavailable, which reduces the possibility of false positives.
- 2. Even if some Sentinel processes are faulty, the Sentinel system can still work properly to prevent faults.

On a higher level, there is a larger distributed system consisting of Sentinels, Redis master and replica nodes, and clients connected to Sentinels and Redis.

Functions

- Monitoring: Sentinel continuously checks whether the master and replica nodes are working properly.
- Notification: If a node is faulty, Sentinel can notify the system administrator or other computer programs by calling an API.
- Automatic failover: If the master node is abnormal, Sentinel starts a failover to promote a replica to master. Other replicas replicate data from the new master node. Applications that use the Redis instance will be notified that they should connect to the new address.
- Client configuration: Sentinel serves as the authoritative source for client service discovery. Clients connect to Sentinel and requests the address of the master Redis node that is responsible for specific services. If a failover occurs, Sentinels delivers the new address.

14.3.13 Does DCS for Redis Support Sentinel?

Cluster instances and master/standby DCS Redis 4.0/5.0/6.0 instances support Sentinels. Sentinels monitor the running status of both the master and standby nodes of a master/standby instance and each shard of a cluster instance. If the master node becomes faulty, a failover will be performed.

However, DCS for Redis 3.0 does not support Redis Sentinel. Instead, it uses keepalive to monitor master and replica nodes and to manage failovers.

14.3.14 What Is the Default Data Eviction Policy?

Data is evicted from cache based on a user-defined space limit in order to make space for new data.

You can change the eviction policy by configuring the **maxmemory-policy** parameter.

When **maxmemory** is reached, you can select one of the following eight eviction policies:

- noeviction: When the memory limit is reached, DCS instances return errors to clients and no longer process write requests and other requests that could result in more memory to be used. However, DEL and a few more exception requests can continue to be processed.
- **allkeys-lru**: DCS instances try to evict the least recently used keys first, in order to make space for new data.
- **volatile-lru**: DCS instances try to evict the least recently used keys with an expire set first, in order to make space for new data.
- **allkeys-random**: DCS instances recycle random keys so that new data can be stored.
- **volatile-random**: DCS instances evict random keys with an expire set, in order to make space for new data.
- **volatile-ttl**: DCS instances evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first, in order to make space for new data.
- **allkeys-lfu**: DCS instances evict the least frequently used keys from all keys.
- **volatile-lfu**: DCS instances evict the least frequently used keys with an **expire** field from all keys.

NOTE

If no key can be recycled, **volatile-lru**, **volatile-random**, and **volatile-ttl** are the same as **noeviction**. For details, see the description of **noeviction**.

14.3.15 What Should I Do If an Error Occurs in Redis Exporter?

Start the Redis exporter using the CLI. Based on the output, check for errors and troubleshoot accordingly.

```
[root@ecs-swk /]./redis_exporter -redis.addr 192.168.0.23:6379
INFO[0000] Redis Metrics Exporter V0.15.0 build date:2018-01-19-04:08:01 sha1:
a0d9ec4704b4d35cd08544d395038f417716a03a
Go:go1.9.2
INFO[0000] Providing metrics at :9121/metrics
INFO[0000] Connecting to redis hosts: []string{192.168.0.23:6379}
INFO[0000] Using alias:[]string{""}
```

14.3.16 How Can I Secure My DCS Redis Instances?

Redis is one of the most powerful and widely used open-source cache technologies. However, the open-source Redis does not have robust security features of its own. It is vulnerable to malicious Internet attacks, possibly causing data breaches.

To secure your DCS Redis instances, consider taking the following advice:

- Network connection configurations
 - a. Encrypt sensitive data and disable public access.

Sensitive data must be encrypted before being stored. Do not use public access unless otherwise required.

b. Configure access rules for your security groups.

Security groups and VPCs are designed for securing network access. Allow access over as few ports as possible to avoid risks.

c. Configure ECS firewalls.

Configure firewall filtering rules for the ECS where your client runs.

- d. Set the instance password.
- e. Configure a whitelist.
- redis-cli usage
 - a. Hide the password.

Problem: If the **-a <password>** option is used, the password may show up when the **ps** command is run.

Solution: Modify the Redis source code. Hide the password immediately after starting redis-cli by calling the main function.

b. Disable sudo in running scripts.

Problem: Parameters for starting redis-cli contain sensitive patterns related to the password, which may show up when the **ps** command is run and may be logged.

Solution: Access the instance by calling APIs (or through redis-py in Python). Do not allow switching to the **dbuser** user using sudo in rediscli.

14.3.17 Why Is Redisson Distributed Lock Not Supported by DCS Proxy Cluster Redis 3.0 Instances?

Redisson implements lock acquisition and unlocking in the following process:

- 1. Redisson lock acquisition and unlocking are implemented by running Lua scripts.
- 2. During lock acquisition, the **EXISTS**, **HSET**, **PEXPIRE**, **HEXISTS**, **HINCRBY**, **PEXPIRE**, and **PTTL** commands must be executed in the Lua script.
- 3. During unlocking, the **EXISTS**, **PUBLISH**, **HEXISTS**, **PEXIPRE**, and **DEL** commands must be executed in the Lua script.

In a proxy-based cluster, the proxy processes **PUBLISH** and **SUBSCRIBE** commands and forwards requests to the Redis server. The **PUBLISH** command cannot be executed in the Lua script.

As a result, Proxy Cluster DCS Redis 3.0 instances do not support Redisson distributed locks. To use Redisson, resort to Redis 4.0 or 5.0 instead.

14.3.18 Can I Customize or Change the Port for Accessing a DCS Instance?

You cannot customize or change the port for accessing a DCS Redis 3.0 instance. You can customize (during instance creation) and change the port for accessing a DCS Redis 4.0 or later instance.

Redis 3.0

Intra-VPC access: port 6379; public access without SSL: port 6379; public access with SSL: port 36379.

• Redis 4.0 and later

You can specify a port (ranging from 1 to 65535) or use the default port (6379) for accessing an instance. If no port is specified, the default port will be used.

Public access is not supported by DCS Redis 4.0/5.0/6.0 instances.

If the instance and the client use different security groups, you must configure access rules for the security groups, allowing access through the specified port. For details, see **Security Group Configurations**.

Customizing a Port

When creating a DCS Redis 4.0, 5.0, or 6.0 instance, you can enter a port number for **IP Address**. If you do not specify a port, the default port 6379 is used.

Changing the Port

After a DCS Redis 4.0, 5.0, or 6.0 instance is created, you can change its port.

- 1. In the navigation pane of the DCS console, choose Cache Manager.
- 2. Click a DCS Redis instance.
- 3. In the **Connection** area, click 🖉 next to **Connection Address**.

NOTICE

After the port is changed, all connections to the Redis instance are interrupted, and services are connected to the new port.

14.3.19 Can I Modify the Connection Addresses for Accessing a DCS Instance?

After a DCS instance is created, its intra-VPC connection addresses cannot be modified. If public access has been enabled for the instance, the EIP bound to the instance can be modified.

To use a different IP address, you must create a new instance and manually specify an IP address. After the instance is created, migrate the data from the old instance to the new instance.

For details about accessing DCS instances through clients, see **Accessing a DCS Redis Instance Through redis-cli**.

14.3.20 Why Do I Fail to Delete an Instance?

Possible causes and solutions:

- The instance is not in the **Running** state.
 - Only instances in the **Running** state can be deleted.
- Check whether the instance fails to be created.

To delete instances that failed to be created, click the number next to **Instance Creation Failures** on the DCS console.

14.3.21 Does DCS Support Cross-AZ Deployment?

Master/Standby and cluster DCS Redis instances can be deployed across availability zones (AZs).

- If instances nodes in an AZ are faulty, nodes in other AZs will not be affected. The standby node automatically becomes the master node to continue to operate, ensuring disaster recovery (DR).
- Cross-AZ deployment does not compromise the speed of data synchronization between the master and standby nodes.

14.3.22 Why Does It Take a Long Time to Start a Cluster DCS Instance?

Possible cause: When a cluster instance is started, status and data are synchronized between the nodes of the instance. If a large amount of data is continuously written into the instance before the synchronization is complete, the synchronization will be prolonged and the instance remains in the **Starting** state. After the synchronization is complete, the instance enters the **Running** state.

Solution: Start writing data to an instance only after the instance has been started.

14.3.23 Does DCS for Redis Provide Backend Management Software?

No. If you wish to query Redis configurations and usage information, use redis-cli. If you wish to monitor DCS Redis instance metrics, go to the Cloud Eye console. For details on how to configure and view the metrics, see **Monitoring**.

14.3.24 Can I Recover Data from Deleted DCS Instances?

If a DCS instance is automatically deleted or manually deleted through the Redis client, its data cannot be retrieved. If you have backed up the instance, you can restore its data from the backup. However, the restoration will overwrite the data written in during the period from the backup and the restoration.

You can restore backup data to a master/standby cluster, or instance through **Backups & Restorations** on the DCS console. For details, see **Restoring a DCS Instance**.

If a DCS instance is deleted, the instance data and its backup will also be deleted. Before deleting an instance, you can download the backup files of the instance for permanent local storage and can also migrate them to a new instance if you need to restore the data. For details about how to download the backup data, see **Downloading a Backup File**

14.3.25 Does DCS for Redis Support SSL Encrypted Transmission?

By default, SSL is disabled for DCS Redis 6.0 instances. To enable it, see **Configuring SSL**.

For public access to DCS instances (supported only by DCS Redis 3.0 instances), you can enable TLS encryption with Stunnel. For details, see the **instructions on**

installing and configuring Stunnel. When DCS provisions instances, the specified Certificate Chain (CA) will generate a unique service certificate for each instance. When connecting to an instance, clients can use the CA root certificates downloaded from the management console to authenticate the instance server and encrypt data during transmission.

DCS Redis for 4.0/5.0 only support plaintext transmission. They do not support SSL encrypted transmission.

14.3.26 How Do I Enable or Disable SSL for Public Access to a DCS Redis 3.0 Instance?

When you enable public access, SSL is enabled by default.

To disable SSL encryption, perform the following steps:

1. Open the page for configuring public access.

Connection ⑦		
Password Protected	Yes	
Connection Address	redis-dd	n:6379 🗖
IP Address	10.2 .: 38:6379 🗖	
Public Access	On∠ ⑦	
	Public Access Address	1: 6379
	SSL	On 🗗 Download Certificate for Public Acces

2. Disable SSL encryption, and click **OK**.

Modify Publi	c Access Configuration	×
Public Access		
Elastic IP Address	Second Contract	
SSL		
	OK Cancel	

3. In the **Connection** area on the instance details page, **SSL** is disabled.

14.3.27 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Memory Usage of Unused DCS Instances Greater Than Zero?

For DCS Redis 3.0 instances instances, the available memory is less than the total memory because some memory is reserved for system overhead and data

persistence (supported by master/standby instances). DCS instances use a certain amount of memory for Redis-server buffers and internal data structures. This is why memory usage of unused DCS instances is greater than zero. This problem will not occur on other instance versions.

14.3.28 How Do I Estimate Redis Memory Usage?

The estimated memory usage may be different from the actual memory usage. Currently, DCS for Redis provides the following memory-related metrics:

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra W Dat a)
memory_us age	Memor y Usage	Memory consumed by the monitored object Unit: %	0– 100%	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute
used_memo ry	Used Memor y	Number of bytes used by the Redis server Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute

Table 14-6 DCS Redis 3.0 instance metrics

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra W Dat a)
used_memo ry_dataset	Used Memor y Dataset	Dataset memory that the Redis server has used Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Supported by Redis 4.0 and later Dimension: dcs_instance_id	1 min ute
used_memo ry_dataset_ perc	Used Memor y Dataset Ratio	Percentage of data memory that Redis has used to the total used memory Unit: %	0- 100%	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Supported by Redis 4.0 and later Dimension: dcs_instance_id	1 min ute
used_memo ry_rss	Used Memor y RSS	Resident set size (RSS) memory that the Redis server has used, which is the memory that actually resides in the memory, including all stack and heap memory but not swapped-out memory Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Mo nit ori ng Per iod (Ra W Dat a)
memory_fra g_ratio	Memor y Fragme ntation Ratio	Current memory fragmentation, which is the ratio between used_memory_rss/ used_memory.	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute
used_memo ry_peak	Used Memor y Peak	Peak memory consumed by Redis since the Redis server last started Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute
used_memo ry_lua	Used Memor y Lua	Number of bytes used by the Lua engine Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_id	1 min ute

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Monito ring Period (Raw Data)
memory_us age	Memor y Usage	Memory consumed by the monitored object Unit: %	0– 100%	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute
used_memo ry	Used Memor y	Number of bytes used by the Redis server Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute
used_memo ry_dataset	Used Memor y Dataset	Dataset memory that the Redis server has used Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute

Table 14-7 DCS Redis 4.0 and 5.0 instance metrics

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Monito ring Period (Raw Data)
memory_fra g_ratio	Memor y Fragme ntation Ratio	Ratio between Used Memory RSS and Used Memory	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute
used_memo ry_lua	Used Memor y Lua	Number of bytes used by the Lua engine Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute
used_memo ry_peak	Used Memor y Peak	Peak memory consumed by Redis since the Redis server last started Unit: byte	≥ 0	Monitored object: Single-node, master/ standby, or cluster DCS Redis instance Dimension: dcs_instance_i d	1 minute

14.3.29 Why Is the Capacity or Performance of a Shard of a Redis Cluster Instance Overloaded When That of the Instance Is Still Below the Bottleneck?

Redis Cluster uses a special data sharding method. **Every key is part of a hash slot, which is held by a node in the cluster.** To compute what is the hash slot of a given key:

- 1. Take the CRC16 of the key modulo 16384.
- 2. Based on the mapping between hash slots and shards, connections are redirected to the right node for data read and write operations.

Therefore, keys are not evenly distributed to each shard of an instance. If a shard contains a big key or a hot key, the capacity or performance of the shard will be overloaded, but the load on other shards is still low. As a result, the capacity or performance bottleneck of the entire instance is not reached.

14.3.30 Does DCS Support External Extensions, Plug-ins, or Modules?

No. DCS for Redis does not support external extensions, plug-ins, or modules. There is no plan for supporting modules.

14.3.31 Why Is "Error in execution" Returned When I Access Redis?

Symptom: "Error in execution; nested exception is io.lettuce.core.RedisCommandExecutionException: OOM command not allowed when used memory > 'maxmemory''' is returned during a Redis connection.

Analysis: An out-of-memory (OOM) error indicates that the maximum memory is exceeded. In the error information, the "maxmemory" parameter indicates the maximum memory configured on the Redis server.

If the memory usage of the Redis instance is less than 100%, the memory of the node where data is written may have reached the maximum limit. Connect to each node in the cluster by running **redis-cli -h <redis_ip> -p 6379 -a** <**redis_password> -c --bigkeys**. When connecting to a replica node, run the **READONLY** command before running the **bigkeys** command.

14.3.32 Why Does a Key Disappear in Redis?

Normally, Redis keys do not disappear. If a key is missing, it may have expired, been evicted, or been deleted.

Perform the following checks one by one:

- 1. Check whether the key has expired.
- 2. View the monitoring information and check whether eviction was triggered.
- 3. Run the **INFO** command on the server side to check whether the key has been deleted.

14.3.33 Why Does an OOM Error Occur During a Redis Connection?

Symptom

"Error in execution; nested exception is io.lettuce.core.RedisCommandExecutionException: OOM command not allowed when used memory > 'maxmemory'" is returned during a Redis connection.

Fault Locating

An out-of-memory (OOM) error indicates that the maximum memory is exceeded. In the error information, the **maxmemory** parameter indicates the maximum memory configured on the Redis server.

If the memory usage of the Redis instance is less than 100%, the memory of the node where data is written may have reached the maximum limit. Connect to each node in the cluster by running **redis-cli -h <redis_ip> -p 6379 -a** <**redis_password> -c --bigkeys**. When connecting to a replica node, run the **READONLY** command before running the **bigkeys** command.

14.3.34 What Clients Can I Use for Redis Cluster in Different Programming Languages?

The following table compares Redis Cluster and Proxy Cluster in DCS.

ltem	Redis Cluster	Proxy Cluster	
Redis compatibility	High	Medium	
Client compatibility	Medium (The cluster mode must be enabled on the client.)	High	
Costs	High	Medium	
Latency	Low	Medium	
Read/write splitting	Native support (client SDK configuration)	Implemented by using proxies	
Performance	High	Medium	

Table 14-8 Comparing Redis Cluster and Proxy Cluster

Redis Cluster does not use proxies, and therefore delivers lower latency and higher performance. However, Redis Cluster instances are based on the open-source Redis Cluster protocol, so their client compatibility is poorer than that of Proxy Cluster instances.

The following table lists clients that can be used for Redis Cluster.

Table 14-9 Cli	ients that can	be used for	Redis Cluster
----------------	----------------	-------------	----------------------

Language	Client	Reference Document
Java	Jedis	https://github.com/ xetorthio/jedis#jedis- cluster

Language	Client	Reference Document	
Java	Lettuce	https://github.com/ lettuce-io/lettuce-core/ wiki/Redis-Cluster	
РНР	php redis	https://github.com/ phpredis/ phpredis#readme	
Go	Go Redis	Redis Cluster: https:// pkg.go.dev/ github.com/go-redis/ redis/ v8#NewClusterClient Proxy Cluster, single- node, or master/standby: https://pkg.go.dev/ github.com/go-redis/ redis/v8#NewClient	
Python	redis-py-cluster	https://github.com/ Grokzen/redis-py- cluster#usage-example	
С	hiredis-vip	https://github.com/ vipshop/hiredis-vip? _ga=2.64990636.268662 337.1603553558-97776 0105.1588733325	
C++	redis-plus-plus	https://github.com/ sewenew/redis-plus- plus? _ga=2.64990636.26866 337.1603553558-97776 0105.1588733325#redi -cluster	
Node.js	node-redis io-redis	https://github.com/ NodeRedis/node-redis https://github.com/ luin/ioredis	

To view all Redis clients, see https://redis.io/clients.

14.3.35 Why Do I Need to Configure Timeout for Redis Cluster?

If timeout is not configured, connections will fail.

When you connect to a Redis Cluster instance using Spring Boot and Lettuce, connect to all cluster nodes, including faulty replicas.

• If timeout is not configured, minute-level blocking (120s in earlier Lettuce versions and 60s in the new version) may occur when there is a faulty replica, as shown in the following figure.

Project 🔻 😳 😤 🗢	n application.ym ×
LettuceClusterTest D:\Workspace\LettuceClusterTest	1 # Redis Cluster
> 🖿 .idea	2 spring:
✓ ■ src	3 🖶 redis:
Y 🖿 main	4 database: 0
🗸 🖿 java	5 cluster:
✓ com dcs	6
> 🛅 config	
 Controller 	
C TestController	
> 🖿 web	10 max-medianete: 2 # Maximum references
 Impresources 	in max-redirects. 5 # maximum redirections
🧒 application.yml	
> 🖿 test	12 pool:
> 🖿 target	13 max-active: 1000 # maximum number of connections in the connection pool. A negative value indicates no limit.
LettuceClusterTest.im	14 max-idle: 10 # Maximum number of idle connections in the connection pool
<i>m</i> pom.xml	15 min-idle: 5 # Minimum number of idle connections in the connection pool
IIII External Libraries	16 max-wait: -1 # Maximum time for waiting for connections in the connection
Scratches and Consoles	poor. A riegative Value indicates no limit.

The end-to-end service access time may reach the maximum timeout, as shown in the following figure.

• After the **timeout** parameter is configured on the client, the timeout on the replica will be greatly shortened. You can adjust the timeout based on the service requirements. Assume that the configuration is as follows.

The following figure shows the end-to-end service access time after the configuration is complete.

If the **timeout** parameter is not configured and there is a faulty node, client connections will be blocked.

Configure the timeout based on what the service can tolerate. For example, if you need to request Redis twice in an HTTP request and the maximum timeout of an HTTP request is 10s, it is recommended that you set the timeout in Redis to 5s. This prevents service interruption if faults occur due to a long timeout duration or no timeout duration.

14.3.36 What Are the Constraints on Implementing Multi-DB on a Proxy Cluster Instance?

Note the following constraints when you consider implementing multi-DB:

- Usage constraints:
 - a. The SWAPDB command does not support multi-DB.
 - b. The INFO KEYSPACE command does not return data of multi-DB.
 - c. To query the total number of keys in each database, use the customized **dbstats** command. CPU usage will surge on the node executing this command.
 - d. LUA scripts do not support multi-DB.
 - e. The **RANDOMKEY** command does not support multi-DB.
 - f. The **SELECT** command cannot be embedded in transactions.
 - g. PUBLISH cannot be used in Lua scripts.
 - h. The database number ranges from 0 to 255.
 - i. Proxy Cluster DCS Redis 3.0 instances do not support multi-DB.
- Performance constraints
 - a. The **FLUSHDB** command deletes keys one by one, which takes a long time and is slower than the open-source native implementation. The execution speed of the **FLUSHDB** command is the same as that of the **SCAN** command (which should be tested by the customer).
 - b. The **DBSIZE** command is time-consuming. Do not use it in the code.
 - c. If multi-DB is used, the performance of the **KEYS** and **SCAN** commands deteriorates by up to 50%.
- Other constraints:

The backend storage rewrites keys based on certain rules. Keys in the exported RDB file are not the original keys. However, the access through the Redis protocol is not affected.

Procedure for Enabling Multi-DB on a Single-DB Instance

By default, multi-DB is disabled. Before enabling or disabling multi-DB for an instance, clear the instance data. Do as follows to enable multi-DB.

- **Step 1** Log in to the DCS console.
- **Step 2** Connect to the instance and run the **FLUSHALL** command to clear the instance data.
- **Step 3** On the **Cache Manager** page of the DCS console, click the desired DCS instance.
- **Step 4** Choose **Instance Configuration** > **Parameters**.

- **Step 5** Click **Modify** in the row that contains parameter **multi-db**, and then change its value to **yes**.
- **Step 6** Click **Save** and then confirm the modification. The instance does not need to be restarted.

maxmemory-policy 🕥	volatile-Iru	volatile-lru,allkeys-lru,volatile-lfu,allkeys-lfu,volatile-random,allkeys-random,volatile-t	volatile-lru	Modify
multi-db 🕐	no	no,yes	no	Modify
multi-db-keys-scan-enabled 💿	no	no,yes	no	Modify

----End

14.3.37 Can I Change the AZ for an Instance?

No.

If you want to use a different AZ, create another instance in the desired AZ and then migrate data.

NOTE

- This function is supported by DCS Redis 4.0 instances and later.
- IP switching is supported only when both the source and target instances are Redis instances in the cloud.

Prerequisites

• The target instance is available. If you already have a DCS Redis instance, use it directly and clear the instance data before the migration. For details, see **Clearing DCS Instance Data**.

If the target instance data is not cleared before the migration and the source and target instances contain the same key, the key in the target instance will be overwritten by the key in the source instance after the migration.

- The target Redis, source Redis, and migration task resources are in the same VPC.
- The target and source instances use the same port.
- IP switching can be performed only when the following conditions are met:
 - IP switching depends on the data migration function. Therefore, the source and target instances must support the data migration function.
 For details, see DCS data migration modes.
 - The following table lists the supported IP switching scenarios.

Table 14-10 IP switching scenarios

Source	Target
Single-node or master/standby	Single-node, master/standby, or Proxy Cluster
Proxy Cluster	Single-node, master/standby, or Proxy Cluster

Precautions for IP Switching

- 1. Online migration will stop during the switching.
- 2. Instances will be read-only for one minute and disconnected for several seconds during the switching.
- 3. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after the IP switching.
- 4. If the source and target instances are in different subnets, the subnet information will be updated after the switching.
- 5. If the source is a master/standby instance, the IP address of the standby node will not be switched. Ensure that this IP address is not used by your applications.
- 6. If your applications use a domain name to connect to Redis, the domain name will be used for the source instance. Select **Yes** for **Switch Domain Name**.
- 7. Ensure that the passwords of the source and target instances are the same. If they are different, verification will fail after the switching.
- 8. If a whitelist is configured for the source instance, ensure that the same whitelist is configured for the target instance before switching IP addresses.

Switching IP Addresses

Step 1 Log in to the DCS console.

- **Step 2** Click Sin the upper left corner of the management console and select the region where your instance is located.
- **Step 3** In the navigation pane, choose **Data Migration**.
- Step 4 Click Create Online Migration Task.
- **Step 5** Enter the task name and description.
- **Step 6** Configure the VPC, subnet, and security group for the migration task.

The VPC, subnet, and security group facilitate the migration. Ensure that the migration resources can access the source and target Redis instances.

- **Step 7** Configure the migration task by referring to **Configuring the Online Migration Task**. Set **Migration Type** to **Full + Incremental**.
- Step 8 On the Online Migration page, when the migration task status changes to Incremental migration in progress, choose More > Switch IP in the Operation column.
- **Step 9** In the **Switch IP** dialog box, select whether to switch the domain name.

NOTE

- If a domain name is used, switch it or you must modify the domain name on the client.
- If no domain name is used, the DNS of the instances will be updated.

Step 10 Click **OK**. The IP address switching task is submitted successfully. When the status of the migration task changes to **IP switched**, the IP address switching is complete.

----End

Rolling Back IP Addresses

If you want to change the instance IP address to the original IP address, perform the following operations:

- **Step 1** Log in to the DCS console.
- **Step 2** Click Sin the upper left corner of the management console and select the region where your instance is located.
- **Step 3** In the navigation pane, choose **Data Migration**.
- **Step 4** On the **Online Migration** page, locate the row that contains the migration task in the **IP switched** state, choose **More** > **Roll Back IP**.
- **Step 5** In the confirmation dialog box, click **Yes**. The IP address rollback task is submitted successfully. When the task status changes to **IP rolled back**, the rollback is complete.

----End

14.3.38 Explaining and Using Hash Tags

Hash Tag Design

Multi-key operations, such as those using the **MSET** command or Lua scripts, are atomic. All specified keys are executed at the same time. However, in a cluster, each key is hashed to a given shard, and multi-key operations are no longer atomic. The keys may be allocated to different slots. As a result, some keys are updated, while others are not. If there is a hash tag, the cluster determines which slot to allocate a key based on the hash tag. Keys with the same hash tag are allocated to the same slot.

Using Hash Tags

Only the content between the first left brace ({) and the following first right brace (}) is hashed.

For example:

- In keys {user1000}.following and {user1000}.followers, there is only one pair of braces. user1000 will be hashed.
- In key foo{}{bar}, there is no content between the first { and the first }. The whole key foo{}{bar} will be hashed as usual.
- In key foo{{bar}zap, {bar (the content between the first { and the first }) is hashed.
- In key foo{bar}{zap}, bar is hashed because it is between the first pair of { and }.

Hash Tag Example

When the following operation is performed:

EVAL "redis.call('set',KEYS[1],ARGV[1]) redis.call('set',KEYS[2],ARGV[2])" 2 key1 key2 value1 value2

The following error is displayed:

ERR 'key1' and 'key2' not in the same slot

You can use a hash tag to solve this issue:

EVAL "redis.call('set',KEYS[1],ARGV[1]) redis.call('set',KEYS[2],ARGV[2])" 2 {user}key1 {user}key2 value1 value2

14.3.39 Will Cached Data Be Retained After an Instance Is Restarted?

After a single-node DCS instance is restarted, data in the instance is deleted.

Master/standby and cluster instances (except single-replica clusters) support AOF persistence by default. Data is retained after these instances are restarted.

If AOF persistence is disabled (**appendonly** is set to **no**), data is deleted after the instances are restarted.

14.3.40 How Do I Buy a Multi-DB Proxy Cluster Instance?

When you buy a Proxy Cluster instance, there is only one database by default. This section describes how to buy a Proxy Cluster instance with multiple databases.

D NOTE

Before getting started, learn about the constraints on implementing multi-DB.

- **Step 1** Log in to the DCS console.
- **Step 2** Click ^(Q) in the upper left corner to select a region.
- Step 3 In the navigation pane, choose Parameter Templates.
- **Step 4** In the row that contains the template with the desired cache engine version and instance type (Proxy Cluster), click **Customize**.
- Step 5 Set multi-db to yes.
- **Step 6** Enter a new template name and click **OK**. The custom template is created successfully.
- **Step 7** In the navigation pane, choose **Cache Manager**. Then click **Buy DCS Instance** to create a Proxy Cluster instance.

Set **Parameter Configuration** to **Use custom template** and select the custom template created in the preceding step.

After the instance is created, connect to it to check whether it has multiple databases.

----End

14.4 Redis Commands

14.4.1 How Do I Clear Redis Data?

Exercise caution when clearing data.

• Redis 3.0

Data of a DCS Redis 3.0 instance cannot be cleared on the console, and can only be cleared by the **FLUSHDB** or **FLUSHALL** command in redis-cli.

Run the **FLUSHALL** command to clear all the data in the instance.

Run the **FLUSHDB** command to clear the data in the currently selected DB.

• Redis 4.0/5.0/6.0

To clear data of a DCS Redis 4.0/5.0/6.0 instance, you can run the **FLUSHDB** or **FLUSHALL** command in redis-cli, use the data clearing function on the DCS console, or run the **FLUSHDB** command on Web CLI.

To clear data of a Redis Cluster instance, run the **FLUSHDB** or **FLUSHALL** command on every shard of the instance. Otherwise, data may not be completely cleared.

D NOTE

- Currently, only DCS Redis 4.0 and later instances support data clearing by using the DCS console and by running the **FLUSHDB** command on Web CLI.
- When you run the **FLUSHDB** command on Web CLI, only one shard is cleared at a time. If there are multiple shards, connect to the master node of each shard and run the **FLUSHDB** command separately.
- Redis Cluster data cannot be cleared by using Web CLI.

14.4.2 How Do I Find Specified Keys and Traverse All Keys?

Finding Specified Keys

Big key and hot key analysis does not support key searching with specified conditions. To find keys with the specified prefix or suffix, use the **SCAN** command.

For example, to search for keys that contain the letter *a* in a Redis instance, run the following command in redis-cli:

./redis-cli -h {redis_address} -p {port} [-a password] --scan --pattern '*a*'

Traversing All Keys

Do not use the **KEYS** command to traverse all keys of an instance because the **KEYS** command is complex and may block Redis. To traverse all keys in a DCS Redis instance, run the following command in redis-cli:

./redis-cli -h {redis_address} -p {port} [-a password] --scan --pattern '*'

For details about the **SCAN** command, visit the **Redis official website**.

14.4.3 Why is "permission denied" Returned When I Run the Keys Command in Web CLI?

The **KEYS** command is disabled in Web CLI. This command can only be run in redis-cli.

14.4.4 How Do I Disable High-Risk Commands?

After creating a DCS Redis 4.0 or later instance, you can rename the following critical commands: Currently, you can only rename the **COMMAND**, **KEYS**, **FLUSHDB**, **FLUSHALL**, **HGETALL**, **SCAN**, **HSCAN**, **SSCAN**, and **ZSCAN** commands.

Rename them during instance creation or on the console after the instance is created. To do so, choose **More** > **Command Renaming** in the instance list.

NOTE

- Currently, Redis does not support disabling of commands. To avoid risks when using the preceding commands, rename them. For details about the supported and disabled commands in DCS, see **Command Compatibility**.
- The system will restart the instance after you rename commands. The new commands take effect after the restart.
- Remember the new command names because they will not be displayed on the console for security purposes.

14.4.5 Does DCS for Redis Support Pipelining?

Yes.

For Redis Cluster instances, ensure that all commands in a pipeline are executed on the same shard.

14.4.6 Does DCS for Redis Support the INCR and EXPIRE Commands?

Yes. For more information about Redis command compatibility, see **Command Compatibility**.

14.4.7 Why Do I Fail to Execute Some Redis Commands?

Possible causes include the following:

• The command is incorrect.

As shown in the following figure, the error message is returned because the correct command for deleting a key should be **del**.

• A command available in a higher Redis version is run in a lower Redis version. As shown in the following figure, the error message is returned because a stream command (available in Redis 5.0) is run in Redis 3.0.

```
192.168.0.244:6379> xadd stream01 * field01 teststring
(error) ERR unknown command 'xadd'
192.168.0.244:6379> info server
# Server
redis_version:3.0.7.9
redis_git_sha1:10fba618
```

• The command is disabled in DCS.

For security purposes, some Redis commands are disabled in DCS. For details about disabled and restricted Redis commands, see **Command Compatibility**.

• The LUA script fails to be executed.

For example, the error message "ERR unknown command 'EVAL'" indicates that your DCS Redis instance is of a lower version that does not support the LUA script. In this case, contact technical support for the instance to be upgraded.

• The CLIENT SETNAME and CLIENT GETNAME commands fail to be executed.

This is because the DCS Redis instance is of a lower version that does not support these commands. In this case, contact technical support for the instance to be upgraded.

14.4.8 Why Does a Redis Command Fail to Take Effect?

Run the command in redis-cli to check whether the command takes effect.

The following describes two scenarios:

• Scenario 1: Set and query the value of a key to check whether the **SET** and **GET** commands work.

The **SET** command is used to set the string value. If the value is not changed, run the following commands in redis-cli to access the instance:

```
192.168.2.2:6379> set key_name key_value
OK
192.168.2.2:6379> get key_name
"key_value"
192.168.2.2:6379>
```

• Scenario 2: If the timeout set using the **EXPIRE** command is incorrect, perform the following operations:
Set the timeout to 10 seconds and run the **TTL** command to view the remaining time. As shown in the following example, the remaining time is 7 seconds.

```
192.168.2.2:6379> expire key_name 10
(integer) 1
192.168.2.2:6379> ttl key_name
(integer) 7
192.168.2.2:6379>
```

D NOTE

Redis clients (including redis-cli, Jedis clients, and Python clients) communicate with Redis server using a binary protocol.

If Redis commands are run properly in redis-cli, the problem may lie in the service code. In this case, create logs in the code for further analysis.

14.4.9 Is There a Time Limit on Executing Redis Commands? What Will Happen If a Command Times Out?

Redis command timeouts can be controlled on the client end or server end.

- Timeouts on the client end are controlled in the client code. You can determine the timeouts that suit service needs. For example, if you use Lettuce, a Java client, configure the **timeout** parameter.
- On the server end, the **timeout** parameter is set to **0** by default, indicating that connections will never be terminated. Modify the parameter setting by referring to **Modifying Configuration Parameters**.

14.4.10 Can I Configure Redis Keys to Be Case-Insensitive?

No. Like in open-source Redis, keys in DCS for Redis are case-sensitive and cannot be configured to be case-insensitive.

14.4.11 Can I View the Most Frequently Used Redis Commands?

No. Redis does not record commands and does not support viewing the most frequently used commands.

14.4.12 Common Web CLI Errors

1. ERR Wrong number of arguments for 'xxx' command

This error indicates that the executed Redis command has a parameter error (syntax error). Rewrite the command by referring to the open-source Redis command protocol.

2. ERR unknown command 'xxx'

This error indicates that the command is unknown or is not a valid command defined by Redis. Rewrite the command by referring to the open-source Redis command protocol.

3. ERR Unsupported command: 'xxx'

This error indicates that the command is disabled for DCS Redis instances. For details, see **Web CLI Commands**.

14.5 Instance Scaling and Upgrade

14.5.1 Can DCS Redis Instances Be Upgraded, for Example, from Redis 4.0 to 5.0?

No. Different Redis versions use different underlying architectures. The Redis version used by a DCS instance cannot be changed once the instance is created. For example, you cannot change a DCS Redis 4.0 instance to Redis 5.0. However, you will be informed of any defects or problems found in Redis.

If your service requires the features of higher Redis versions, create a DCS Redis instance of a higher version and then migrate data from the original instance to the new one. For details on how to migrate data, see **Migrating Data with DCS**.

14.5.2 Are Services Interrupted If Maintenance is Performed During the Maintenance Time Window?

O&M personnel will contact you before performing maintenance during the maintenance time window, informing you of the operations and their impacts. You do not need to worry about instance running exceptions.

14.5.3 Are Instances Stopped or Restarted During Specification Modification?

No. Specification modifications can take place while the instance is running and do not affect any other resources.

14.5.4 Are Services Interrupted During Specification Modification?

You are advised to change the instance specifications during off-peak hours because specification modification has the following impacts:

Version	Supported Type Change	Precautions
Redis 3.0	From single- node to master/ standby	The instance cannot be connected for several seconds and remains read-only for about one minute.

Table 14-11	Instance type	change options	s supported by	different DCS instances
-------------	---------------	----------------	----------------	-------------------------

Version	Supported Type Change	Precautions
	From master/ standby to Proxy Cluster	 If the data of a master/standby DCS Redis 3.0 instance is stored in multiple databases, or in non-DB0 databases, the instance cannot be changed to the Proxy Cluster type. A master/standby instance can be changed to the Proxy Cluster type only if its data is stored only on DB0. The instance cannot be connected and remains read-only for 5 to 30
		minutes.
Redis 4.0/5.0	From master/ standby to Proxy Cluster	 Before changing the instance type to Proxy Cluster, evaluate the impact on services. For details, see What Are the Constraints on Implementing
From Pro Cluster to master/st	From Proxy Cluster to master/standby	Multi-DB on a Proxy Cluster Instance? and Command Restrictions.
		 Memory usage must be less than 70% of the maximum memory of the new flavor.
		3. Some keys may be evicted if the current memory usage exceeds 90% of the total.
		4. After the change, create alarm rules again for the instance.
		5. For instances that are currently master/standby, ensure that their read-only IP address or domain name is not used by your application.
		6. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after the change.
		7. Modify instance specifications during off-peak hours. An instance is temporarily interrupted and remains read-only for about 1 minute during the specification change.

Any instance type changes not listed in the preceding table are not supported. To modify specifications while changing the instance type, see **IP Switching**.

Table 14-12 Impact of scaling

Instance Type	Scali ng Type	Impact
Single- node, master/ standby	Scali ng up/ down	• During scaling up, a DCS Redis 4.0/5.0/6.0 basic instance will be disconnected for several seconds and remain read-only for about 1 minute. During scaling down, connections will not be interrupted.
		• A DCS Redis 3.0 instance will be disconnected for several seconds and remain read-only for 5 to 30 minutes.
		 For scaling up, only the memory of the instance is expanded. The CPU processing capability is not improved.
		• Single-node DCS instances do not support data persistence. Scaling may compromise data reliability. After scaling, check whether the data is complete and import data if required. If there is important data, use a migration tool to migrate the data to other instances for backup.
		• For master/standby instances, backup records created before scale-down cannot be used after scale-down. If necessary, download the backup file in advance or back up the data again after scale-down.

Instance Type	Scali ng Type	Impact
Proxy Cluster and Redis Cluster	Scali ng up/ down	• During scaling up and scaling down that does not involve a shard quantity decrease, connections will not be interrupted, but CPU resources will be occupied, decreasing performance by up to 20%.
		• During scaling up and scaling down that involves a shard quantity decrease, nodes will be deleted, and connections will be interrupted. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after scaling.
		 If the shard quantity increases, new Redis Server nodes are added, and data is automatically balanced to the new nodes.
		• If the shard quantity decreases, nodes will be deleted. Before scaling down a Redis Cluster instance, ensure that the deleted nodes are not directly referenced in your application, to prevent service access exceptions.
		• To scale down an instance, ensure that the used memory of each node is less than 70% of the maximum memory per node of the new flavor.
		 Scaling involves data migration, which increases access latency. For a Redis Cluster instance, ensure that the client can properly process the MOVED and ASK commands. Otherwise, requests will fail.
		 If the memory becomes full during scaling due to a large amount of data being written, scaling will fail.
		• Before scaling, check for big keys through Cache Analysis. Redis has a limit on key migration. If the instance has any single key greater than 512 MB, scaling will fail when big key migration between nodes times out. The bigger the key, the more likely the migration will fail.
		• Before scaling up or down a Redis Cluster instance, ensure that automated cluster topology refresh is enabled if you use Lettuce. If it is disabled, you will need to restart the client after scaling. For details about how to enable automated refresh, see an example of using Lettuce to connect to a Redis Cluster instance.
		 Backup records created before scaling cannot be used. If necessary, download the backup file in advance or back up the data again after scaling.

Instance Type	Scali ng Type	Impact
Master/ standby, read/write splitting, and Redis Cluster	Scali ng out/i n (repli ca	• Before scaling out or in a Redis Cluster instance, ensure that automated cluster topology refresh is enabled if you use Lettuce. If it is disabled, you will need to restart the client after scaling. For details about how to enable automated refresh, see an example of using Lettuce to connect to a Redis Cluster instance.
instances	quan tity chan ge)	• Deleting replicas interrupts connections. If your application cannot reconnect to Redis or handle exceptions, you may need to restart the application after scaling. Adding replicas does not interrupt connections.
		 If the number of replicas is already the minimum supported by the instance, you can no longer delete replicas.

14.5.5 Why Can't I Modify Specifications for a DCS Redis Instance?

Specifications of a DCS instance cannot be modified if another task of the instance is still running. For example, you cannot delete or scale up an instance while it is being restarted. Likewise, you cannot delete an instance while it is being scaled up.

If the specification modification fails, try again later. If it fails again, contact technical support.

14.5.6 How Do I Reduce the Capacity of a DCS Instance?

The following table lists scaling options supported by different DCS instances.

Cache Engine	Single-Node	Master/ Standby	Redis Cluster	Proxy Cluster
Redis 3.0	Scaling up/ down	Scaling up/ down	N/A	Scaling up
Redis 4.0	Scaling up/ down	Scaling up/ down, out/in	Scaling up/ down, out/in	Scaling up/ down
Redis 5.0	Scaling up/ down	Scaling up/ down, out/in	Scaling up/ down, out/in	Scaling up/ down
Redis 6.0	Scaling up/ down	Scaling up/ down	N/A	N/A

Table 14-13 Scaling options supported by different DCS instances

For details about how to change the capacity, see **Modifying DCS Instance Specifications**.

If you want to use a smaller Proxy Cluster DCS Redis 3.0 instance, back up the data of the existing instance, and create a new Proxy Cluster instance with the desired capacity. Then, import the backup data to the new instance. After the data migration is complete, delete the old instance. For details about data migration operations, see **Importing Backup Files**.

14.5.7 How Do I Handle an Error When I Use Lettuce to Connect to a Redis Cluster Instance After Specification Modification?

Symptom

If the shard quantity changes during specification modification of a Redis Cluster instance, some slots are migrated to new shards. The following error occurs when you use Lettuce to connect to the instance.

Figure 14-11 Error

org.springframework.data.redis.RedisSystemException: Redis exception; nested exception is io.lettuce.core.RedisException: io.lettuce.core.R edisException: java.lang.IllegalArgumentException: Connection to 1907.188.78.125:8377 not allowed. This connection point is not known in the

For details, see **Connection to X not allowed**. This connection point is not known in the cluster view.

Analysis

Specification modification process of a Redis Cluster instance:

After being started, the client obtains the cluster node topology by using the **Cluster Nodes** command based on RESP2, and maintains the topology in its inmemory data structure.

For data access, the client uses the CRC16 algorithm to calculate the hash slot of a key, and automatically routes requests based on the topology and slot information stored in the memory.

If the number of shards changes during scaling, the topology and slot mapping changes. In this case, the client needs to automatically update the topology. Otherwise, the request route may fail or the route location may be incorrect. As a result, an error is reported during client connection.

For example, when the number of shards in a Redis Cluster instance changes from three to six, the topology and slot mapping changes as shown in the following figures.

Figure 14-12 A Redis Cluster instance before scaling up

Solutions

Solution 1 (Recommended)

Enable automated topology refresh.

ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder() // Periodic refresh: every *time* milliseconds. .enablePeriodicRefresh(Duration.ofMillis(time)) // Triggers of adaptive refresh: MOVED redirection, ASK redirection, reconnection, unknown node (since 5.1), and slot not in any of the current shards (since 5.2). .enableAllAdaptiveRefreshTriggers() .build();

For details, see **an example of using Lettuce to connect to a Redis Cluster instance**.

If you use Lettuce to connect to a Redis Cluster instance and automated refresh is not enabled, you need to restart the client after specification modification.

Solution 2

Disable validation of cluster node membership.

```
ClusterClientOptions clusterClientOptions = ClusterClientOptions.builder()
.validateClusterNodeMembership(false)
build():
```

If **validateClusterNodeMembership** is **true**, check whether the current connection address is in the cluster topology obtained through **CLUSTER NODES**, before connecting to the cluster. If it is not in the topology, the error occurs.

NOTE

Impact of disabling validation of cluster node membership:

- Lack of security breach detection.
- If automated topology refresh is disabled, a MOVED redirection request may be generated after the Redis Cluster specifications are changed and the shard quantity increases. Redirection increases the network load of the cluster and the time required to process a single request. If the shard quantity decreases, deleted shards cannot be connected.

14.6 Monitoring and Alarm

14.6.1 How Do I View Current Concurrent Connections and Maximum Connections of a DCS Redis Instance?

Viewing Concurrent Connections of a DCS Redis Instance

The number of connections received by a DCS instance is a metric that is monitored by Cloud Eye. For details on how to view metrics, see **Viewing DCS Monitoring Metrics**.

On the Cloud Eye console, find the **Connected Clients** metric. Click to view monitoring details on an enlarged graph.

Specify a time range to view the metric in a specific monitoring period. For example, you can select a 10-minute period to view the number of connections received during the period. On the graph, you can view the trend and the total number of connections received during the period.

On the Cloud Eye console, you can also view other monitoring metrics of your DCS instances, for example:

- CPU Usage
- Memory Usage
- Used Memory
- Ops per Second

Viewing or Modifying the Maximum Connections of an Instance

When creating an instance on the console, you can view the default maximum number of connections and the limit that can be configured.

After an instance is created, you can view or change the value of **maxclients** (the maximum number of connections) on the **Instance Configuration** > **Parameters** page of the DCS console. (This parameter cannot be modified for Proxy Cluster instances.)

14.6.2 Does Redis Support Command Audits?

No. To ensure high-performance reads and writes, Redis does not audit commands. Commands are not printed.

14.6.3 What Should I Do If the Monitoring Data of a DCS Redis Instance Is Abnormal?

If you have any doubt on the monitoring data of a DCS Redis instance, you can access the instance through redis-cli and run the **INFO ALL** command to view the metrics. For details about the output of the **INFO ALL** command, see http://www.redis.io/commands/info.

14.6.4 Why Is Available Memory of Unused DCS Instances Less Than Total Memory and Why Is Memory Usage of Unused DCS Instances Greater Than Zero?

The available memory is less than the total memory because some memory is reserved for system overhead and data persistence (supported by master/standby instances). DCS instances use a certain amount of memory for Redis-server buffers and internal data structures. This is why memory usage of unused DCS instances is greater than zero.

14.6.5 Why Is Used Memory Greater Than Available Memory?

For single-node and master/standby DCS instances, the used instance memory is measured by the Redis-server process. For cluster DCS instances, the used cluster memory is the sum of used memory of all shards in the cluster.

Due to the internal implementation of the open-source redis-server, the used instance memory is normally slightly higher than the available instance memory.

Why is used_memory higher than max_memory?

Redis allocates memory using zmalloc. It does not check whether used_memory exceeds max_memory every time the memory is allocated. Instead, it checks whether the current used_memory exceeds max_memory at the beginning of a periodic task or command processing. If used_memory exceeds max_memory, eviction is triggered. Therefore, the restrictions of the max_memory policy are not implemented in real time or rigidly. A case in which the used_memory is greater than the max_memory may occur occasionally.

14.6.6 Why Does Bandwidth Usage Exceed 100%?

Metric ID	Metric Name	Description	Value Range	Monitored Object and Dimension	Monitori ng Period (Raw Data)
bandwidth_u sage	Bandwid th Usage	Percentage of the used bandwidth to the maximum bandwidth limit	0-200%	Monitored object: Master/standby DCS Redis 4.0 or 5.0 instances Redis Server of Redis Cluster DCS Redis 4.0 or 5.0 instance Dimension: dcs_cluster_nod e	1 minute

The basic information about the bandwidth usage metric is as follows.

Bandwidth usage = (Input flow + Output flow)/($2 \times Maximum bandwidth$) x 100%

According to the formula, the bandwidth usage counts in the input flow and output flow, which include the traffic for replication between the master and replicas. Therefore, the total traffic is greater than the normal service traffic.

If the value of the **Flow Control Times** metric is larger than 0, the maximum bandwidth has been reached and flow control has been performed.

However, flow control decisions are made without considering the traffic for replication between the master and replicas. Therefore, sometimes the bandwidth usage exceeds 100% but the number of flow control times is 0.

14.6.7 Why Is the Rejected Connections Metric Displayed?

If the **Rejected Connections** metric is displayed, check if the number of connected clients exceeds the maximum allowed number of connections of the instances.

- To check the maximum allowed number of connections, go to the **Parameters** tab page of the instance and check the value of the **maxclients** parameter. (Proxy Cluster instances do not have this parameter. You can view the maximum number of connections on the instance creation page.)
- To check the current number of connections, go to the **Performance Monitoring** tab page of the instance and check the **Connected Clients** metric.

If the current number of connections reaches the upper limit, you can adjust the value of **maxclients**. If the value of **maxclients** can no longer be increased, increase the instance specifications.

Flow control is triggered when the traffic used by a Redis instance in a period exceeds the maximum bandwidth.

D NOTE

For details about the maximum allowed bandwidth, see the "Assured/Maximum Bandwidth" column of different instance types listed in **DCS Instance Specifications**.

Even if the bandwidth usage is low, flow control may still be triggered. The realtime bandwidth usage is reported once in each reporting period. Flow controls are checked every second. The traffic may surge within seconds and then fall back between reporting periods. By the time the bandwidth usage is reported, it may have already restored to the normal level.

For master/standby instances:

- If flow control is always triggered when the bandwidth usage is low, there
 may be service microbursts or big or hot keys. In this case, check for big or
 hot keys.
- If the bandwidth usage remains high, the bandwidth limit may be exceeded. In this case, expand the capacity. Larger capacity supports higher bandwidth.

For cluster instances:

- If flow control is triggered only on one or a few shards, the shards may have big or hot keys.
- If flow control or high bandwidth usage occurs on all or most shards at the same time, bandwidth usage of the instance has reached the limit. In this case, expand the instance capacity.

NOTE

- You can analyze big keys and hot keys on the DCS console. For details, see Analyzing Big Keys and Hot Keys.
- Running commands (such as **KEYS**) that consume lots of resources may cause high CPU and bandwidth usage. As a result, flow control is triggered.

14.7 Data Backup, Export, and Migration

14.7.1 How Do I Export DCS Redis Instance Data?

- For master/standby or cluster instances:
 Perform the following operations to export the data:
 - a. On the Backups & Restorations page, view the backup records.
 - b. If there are no backup records, create a backup manually and download the backup file as prompted.

D NOTE

If your DCS instances were created a long time ago, the versions of these instances may not be advanced enough to support some new functions (such as backup and restoration). You can contact technical support to upgrade your DCS instances. After the upgrade, you can back up and restore your instances.

• For single-node instances:

Single-node instances do not support the backup function. You can use rediscli to export RDB files. This operation depends on **SYNC** command.

 If the instance allows the SYNC command (such as a Redis 3.0 singlenode instance), run the following command to export the instance data:

redis-cli -h {source_redis_address} -p 6379 [-a password] --rdb {output.rdb}

If the instance does not allow the SYNC command (such as a Redis 4.0 or 5.0 single-node instance), migrate the instance data to a master/standby instance and export the data by using the backup function.

14.7.2 Can I Export Backup Data of DCS Redis Instances to RDB Files Using the Console?

• Redis 3.0

No. On the console, backup data of a DCS Redis 3.0 instance can be exported only to AOF files. To export data to RDB files, run the following command in redis-cli:

redis-cli -h {redis_address} -p 6379 [-a password] --rdb {output.rdb}

• Redis 4.0/5.0/6.0

Yes. DCS Redis 4.0/5.0/6.0 instances support AOF and RDB persistence. You can back up data to RDB and AOF files on the console and download the files.

14.7.3 Why Are Processes Frequently Killed During Data Migration?

Possible cause: The memory is insufficient.

Solution: Expand the memory of the server on which the migration command is executed.

14.7.4 Is All Data in a DCS Redis Instance Migrated During Online Migration?

Migration between single-node and master/standby instances involves the full set of data. After the migration, a given key will remain in the same DB as it was before the migration.

By contrast, a cluster instance only has one DB, which is DB0. During the migration, data in all slots of DB0 is migrated.

14.7.5 Does DCS Support Data Persistence? What Is the Impact of Persistence?

Support for Persistence

- DCS Redis instances:
 - Single-node: Data persistence is not supported.
 - Master/standby and cluster (except single-replica clusters): Data persistence is supported.

Persistence Modes

- DCS supports only AOF persistence by default. You can enable or disable persistence as required. All instances except single-node and single-replica cluster ones are created with AOF persistence enabled.
- DCS does not support RDB persistence by default and you cannot configure the save parameter. If RDB persistence is required for a master/standby or cluster instance of Redis 4.0 or later, you can use the backup and restoration function to back up the instance data to an RDB file and store the data in OBS.

Disk Used for Persistence

For DCS Redis 4.0 and later instances, data is persisted to SSD disks.

Impact of AOF Persistence

After AOF persistence is enabled, the Redis-Server process needs to record operations in the AOF file for data persistence.

- If the disk or I/O of the underlying compute node is faulty, the latency may increase or a master/standby switchover may occur.
- Redis-Server periodically rewrites the AOF. During a rewrite, the latency may be high for a short time. For details about the AOF rewriting rules, see When Will AOF Rewrites Be Triggered?

If DCS instances are used to accelerate applications, you are advised to disable persistence for higher performance and stability. Exercise caution when disabling persistence. Without persistence, cached data may be lost in extreme scenarios (for example, when both the master and standby nodes are faulty).

To disable AOF persistence, set parameter **appendonly** to **no** on the instance details page.

14.7.6 When Will AOF Rewrites Be Triggered?

AOF rewrites involve the following concepts:

- Rewrite window, which is currently 01:00 to 04:59
- Disk usage threshold, which is 50%

AOF rewrites are triggered in the following scenarios:

- If the disk usage reaches the threshold (regardless of whether the current time is within the rewrite window), rewrites will be triggered on instances whose AOF file size is larger than the memory dataset size.
- If the disk usage is below the threshold and the current time is within the rewrite window, rewrites will be triggered on instances whose AOF file size is larger than the dataset memory multiplied by 1.5.
- If the disk usage is below the threshold but the current time is out of the rewrite window, rewrites will be triggered on instances whose AOF file size is larger than the maximum memory multiplied by 4.5.

14.7.7 Can I Migrate Data to Multiple Target Instances in One Migration Task?

No. A migration task allows data to be migrated to only one target instance. To migrate data to multiple target instances, create multiple migration tasks.

14.7.8 How Do I Enable the SYNC and PSYNC Commands?

- Migration within DCS:
 - By default, the **SYNC** and **PSYNC** commands can be used when self-hosted Redis is migrated to DCS.
 - During online migration between DCS Redis instances in the same region under the same account, the SYNC and PSYNC commands are automatically enabled.
 - During online migration between DCS Redis instances in different regions or under different accounts within a region, the SYNC and PSYNC commands are not automatically enabled, and online migration cannot be used. You can migrate data using backup files.
- Migration from other cloud vendors to DCS:
 - Generally, cloud vendors disable the **SYNC** and **PSYNC** commands. If you want to use the online migration function on the DCS console, contact the O&M personnel of the source cloud vendor to enable the commands. For offline migration, you can import backup files.
 - If incremental migration is not required, you can perform full migration by referring to Online Full Migration of Redis from Another Cloud with redis-shake. This method does not depend on SYNC and PSYNC.

14.7.9 Why Does Migration Task Creation Fail?

Possible causes:

- 1. The underlying resources are insufficient.
- 2. The specifications of the ECS used for the migration are insufficient.
- 3. The memory of the target Redis created before the migration is less than that of the source Redis.

14.7.10 Will the Same Keys Be Overwritten During Data Migration or Backup Import?

If the data exists on both the source and target instances, the target data is overwritten by the source data. If the data exists only on the target instance, the data will be retained.

Inconsistency between source and target data after the migration may be due to the target data that existed and was retained before migration.

14.7.11 Online Migration with Rump

Background

Rump is an open-source tool designed for migrating Redis data online. It supports migration between DBs of the same instance and between DBs of different instances.

Migration Principles

Rump uses the **SCAN** command to acquire keys and the **DUMP/RESTORE** command to get or set values.

Featuring time complexity O(1), **SCAN** is capable of quickly getting all keys. **DUMP/RESTORE** is used to read/write values independent from the key type.

Rump brings the following benefits:

- The SCAN command replaces the KEYS command to avoid blocking Redis.
- Any type of data can be migrated.
- **SCAN** and **DUMP/RESTORE** operations are pipelined, improving the network efficiency during data migration.
- No temporary file is involved, saving disk space.
- Buffered channels are used to optimize performance of the source server.

NOTICE

- 1. To cluster DCS instances, you cannot use Rump. Instead, use redis-port or rediscli.
- 2. To prevent migration command resolution errors, do not include special characters (#@:) in the instance password.
- 3. Stop the service before migrating data. If data is kept being written in during the migration, some keys might be lost.

Step 1: Installing Rump

1. Download Rump (release version).

On 64-bit Linux, run the following command:

wget https://github.com/stickermule/rump/releases/download/0.0.3/ rump-0.0.3-linux-amd64; 2. After decompression, run the following commands to add the execution permission:

mv rump-0.0.3-linux-amd64 rump; chmod +x rump;

Step 2: Migrating Data

rump -from {source_redis_address} -to {target_redis_address}

Parameter/Option description:

• {source_redis_address}

Source Redis instance address, in the format of redis:// [user:password@]host:port/db. **[user:password@]** is optional. If the instance is accessed in password-protected mode, you must specify the password in the RFC 3986 format. **user** can be omitted, but the colon (:) cannot be omitted. For example, the address may be **redis://:mypassword@192.168.0.45:6379/1**.

db is the sequence number of the database. If it is not specified, the default value is 0.

• {*target_redis_address*}

Address of the target Redis instance, in the same format as the source.

In the following example, data in DB0 of the source Redis is migrated to the target Redis whose connection address is 192.168.0.153. ****** stands for the password.

[root@ecs ~]# ./rump -from redis://127.0.0.1:6379/0 -to redis://:*****@192.168.0.153:6379/0 . Sync done. [root@ecs ~]#

14.7.12 What Should I Consider When Transferring or Operating Data Between Different OSs?

Convert the format of a data file before importing the file.

Run the following command to convert the format of a file in the Windows OS to that in the Unix-like OS:

dos2unix {filename}

Run the following command to convert the format of a file in the Unix-like OS to that in the Windows OS:

unix2dos *{filename}*

14.7.13 Can I Migrate Data from a Multi-DB Source Redis Instance to a Cluster DCS Redis Instance?

A total of 256 DBs (DB 0 to DB 255) can be configured for a single-node or master/standby DCS instance.

• If the target is a Redis Cluster instance (a Redis Cluster instance has only one DB):

Solutions:

- a. Combine different DBs in the source Redis instance into one DB.
- b. Apply for multiple DCS instances.

After the migration, the instance connection address and DB IDs change. In this case, modify the configurations for your services.

• If the target is a Proxy Cluster instance:

By default, the multi-DB function is disabled for Proxy Cluster instances and only one DB (DB0) is available. To use more than one DB, enable multi-DB by referring to **Enabling Multi-DB** before migration.

14.7.14 How Can I Migrate Partial Data?

The online migration function provided on the console does not support migration of specified DBs. If you want to migrate **specified Redis DBs**, use redis-shake to export or import the specified DBs.

For details about how to install and use redis-shake, see **Self-Hosted Redis Cluster Migration with redis-shake** and **redis-shake configuration instructions**.

To migrate **specified data**, develop a script to obtain the specified keys and data and then import the data to a DCS instance.

14.7.15 What Are the Constraints and Precautions for Migrating Redis Data to a Cluster Instance?

• Proxy Cluster instances

Proxy Cluster instances are used in the same way that you use single-node or master/standby instances. However, only one DB is configured for a Proxy Cluster instance by default, and the **SELECT** command is not supported. When data files are imported in batches, an error message will be displayed and ignored if the **SELECT** command exists. Then, the remaining data will continue to be imported.

Example:

DB 0 and DB 2 in the source Redis instance contain data, and the generated AOF or RDB file contains these two DBs.

When the source Redis data is imported into a Proxy Cluster DCS instance, the **SELECT 2** command will be ignored, and then data in DB 2 in the source Redis instance will be imported.

Note that:

- If different DBs in the source Redis instance contain the same keys, values of keys in the DB with the largest ID will overwrite those in the other DBs.
- If the source Redis instance contains multiple DBs, data is stored in the same DB after being migrated to a cluster DCS instance, and the SELECT command is not supported. In this case, modify the configurations for your services.
- Redis Cluster instances

Only one DB is configured for a Redis Cluster instance. Data is migrated to a Redis Cluster instance in a different way from other types of instances. Nodes in the shards of a Redis Cluster must be connected separately through clients.

Data is imported to the nodes separately. Run the following command to query the IP addresses of the cluster nodes:

redis-cli -h {Redis Cluster IP} -p 6379 -a {password} cluster nodes

In the returned list of IP addresses, record the ones marked by "master".

14.7.16 What Should I Consider for Online Migration?

Network

Before online migration, ensure that the network configured for the migration task is connected to source and target Redis instances.

• Tool

Use the online migration function provided on the DCS console.

• Data integrity

If you suspend your services for data migration, check the data volume and main keys after the migration.

If you do not suspend your services, migrate data incrementally.

Impact of capacity expansion of the source instance

During online migration, expanding the source instance's capacity may affect the migration or customer data. If the memory of the source instance becomes insufficient during the migration, stop the migration task and then expand the capacity.

Timing

Migration should take place during off-peak hours.

• Version restrictions

You can migrate data from an earlier version to a later version, and vice versa, but you need to check whether the target instance supports the commands used in your service systems.

• Multi-DB

If both the target and source are Proxy Cluster DCS instances, ensure that the **multi-db** parameter settings of the two are the same. Otherwise, the migration will fail.

14.7.17 Can I Perform Online Migration Without Any Service Interruption?

Yes. You can use the application dual-write mode. In this mode, during data migration, data is still read from the source Redis instance, and operations such as adding, deleting, and modifying data are also performed on the DCS Redis instance.

After maintaining the preceding mode for a period of time (waiting for a large amount of data to be deleted after expiration), migrate the cached data from your service systems to DCS. If service system migration to the cloud service is also involved, deploy your service systems before migrating your cached data.

This mode is not recommended for the following reasons:

- 1. Stable and quick network access cannot be ensured. If the source Redis instance is not deployed on DCS, access DCS over a public network, which is inefficient.
- 2. Modify the code to implement concurrent writing of two sets of data.
- 3. The data eviction policy varies depending on the source Redis instance. It may take a long time to complete data migration and it is difficult to ensure data integrity.

14.7.18 What If "Disconnecting timedout slave" and "overcoming of output buffer limits" Are Reported on the Source Instance During Online Migration?

The following error messages may be displayed during online migration:

• "Disconnecting timedout slave" is reported on the source instance, as shown in the following figure:

Solution: Set the **repl-timeout** parameter of the source Redis instance to 300s.

• "overcoming of output buffer limits" is reported on the source instance, as shown in the following figure:

Solution: Set the **client-output-buffer-limit** parameter of the source Redis instance to 20% of the maximum memory of the instance.

14.7.19 Why Is Memory of a DCS Redis Instance Unchanged After Data Migration Using Rump, Even If No Error Message Is Returned?

For details on how to use Rump, see the Data Migration Guide.

Possible causes:

• Rump does not support migration to cluster DCS instances.

• Commands are incorrectly run in Rump.

14.7.20 Can I Migrate Data from a Lower Redis Version to a Higher One?

Yes. Redis is backward compatible.

The version of the source Redis (DCS, self-built, or another cloud) can be earlier than or the same as the target DCS instance.

14.8 Big/Hot Key Analysis and Expired Key Scan

14.8.1 What Are Big Keys and Hot Keys?

Term	Definition		
Big key	There are two types of big keys:		
	• Keys that have a large value, for example, a 10 MB String key, or a 100 MB Hash, List, or Set key (all elements combined). If the size of a single String key exceeds 10 KB, or if the size of all elements of a key combined exceeds 50 MB, the key is defined as a big key.		
	• Keys that have a large number of elements, for example, a Hash key that has 10,000 elements. If the number of elements in a key exceeds 5000, the key is defined as a big key.		
Hot key	A key is defined as a hot key if it is frequently requested or if it occupies a large number of resources. For example:		
	• In a cluster instance, a shard processes 10,000 requests per second, among which 3000 are performed on the same key.		
	• In a cluster instance, a shard uses a total of 100 Mbits/s inbound and outbound bandwidth, among which 80 Mbits/s is used by the HGETALL operation on a Hash key.		

14.8.2 What Is the Impact of Big Keys or Hot Keys?

Category	Impact
Big key	Instance specifications fail to be modified.
	Specification modification of a Redis Cluster instance involves rebalancing (data migration between nodes). Redis has a limit on key migration. If the instance has any single key bigger than 512 MB, the modification will fail when big key migration between nodes times out. The bigger the key, the more likely the migration will fail.

Category	Impact
	Data migration fails. During data migration, if a key has many elements, other keys will be blocked and will be stored in the memory buffer of the migration ECS. If they are blocked for a long time, the migration will fail.
	Cluster shards are unbalanced.
	• The memory usage of shards is unbalanced. For example, if a shard uses a large memory or even uses up the memory, keys on this shard are evicted, and resources of other shards are wasted.
	• The bandwidth usage of shards is unbalanced. For example, flow control is repeatedly triggered on a shard.
	Latency of client command execution increases.
	Slow operations on a big key block other commands, resulting in a large number of slow queries.
	Flow control is triggered on the instance.
	Frequently reading data from big keys exhausts the outbound bandwidth of the instance, triggering flow control. As a result, a large number of commands time out or slow queries occur, affecting services.
	Master/standby switchover is triggered.
	If the high-risk DEL operation is performed on a big key, the master node may be blocked for a long time, causing a master/standby switchover.
Hot key	Cluster shards are unbalanced.
	If only the shard where the hot key is located is busy processing service queries, there may be performance bottlenecks on a single shard, and the compute resources of other shards may be wasted.
	CPU usage surges.
	A large number of operations on hot keys may cause high CPU usage. If the operations are on a single cluster shard, the CPU usage of the shard where the hot key is located will surge. This will slow down other requests and the overall performance. If the service volume increases sharply, a master/standby switchover may be triggered.
	Cache breakdown may occur.
	If Redis cannot handle the pressure on hot keys, requests will hit the database. The database may break down as its load increases dramatically, affecting other services.

- Keep the size of Strings within 10 KB and the quantity of Hashes, Lists, Sets, or Zsets within 5000.
- When naming keys, use the service name abbreviation as the prefix and do not use special characters such as spaces, line brakes, single or double quotation marks, and other escape characters.
- Do not rely too much on Redis transactions.
- The performance of short connections ("connect" in Redis terminology) is poor. Use clients with connection pools.
- Do not enable data persistence if you use Redis just for caching and can tolerate data loss.
- For details about how to optimize big keys and hot keys, see the following table.

Category	Method
Big key	Split big keys. Scenarios:
	• If the big key is a String, you can split it into several key- value pairs and use MGET or a pipeline consisting of multiple GET operations to obtain the values. In this way, the pressure of a single operation can be split. For a cluster instance, the operation pressure can be evenly distributed to multiple shards, reducing the impact on a single shard.
	• If the big key contains multiple elements, and the elements must be operated together, the big key cannot be split. You can remove the big key from Redis and store it on other storage media instead. This scenario should be avoided by design.
	• If the big key contains multiple elements, and only some elements need to be operated each time, separate the elements. Take a Hash key as an example. Each time you run the HGET or HSET command, the result of the hash value modulo <i>N</i> (customized on the client) determines which key the field falls on. This algorithm is similar to that used for calculating slots in Redis Cluster.
	Store big keys on other storage media.
	If a big key cannot be split, it is not suitable to be stored in Redis. You can store it on other storage media, and delete the big key from Redis.
	CAUTION Do not use the DEL command to delete big keys. Otherwise, Redis may be blocked or even a master/standby switchover may occur.

Category	Method
Hot key	Use the client cache or local cache.
	If you know what keys are frequently used, you can design a two-level cache architecture (client/local cache and remote Redis). Frequently used data is obtained from the local cache first. The local cache and remote cache are updated with data writes at the same time. In this way, the read pressure on frequently accessed data can be separated. This method is costly because it requires changes to the client architecture and code.
	Design a circuit breaker or degradation mechanism.
	Hot keys can easily result in cache breakdown. During peak hours, requests are passed through to the backend database, causing service avalanche. To ensure availability, the system must have a circuit breaker or degradation mechanism to limit the traffic and degrade services if breakdown occurs.

14.8.4 How Do I Analyze the Hot Keys of a DCS Redis 3.0 Instance?

DCS for Redis 3.0 does not support hot key analysis on the console. Alternatively, you can use the following methods to analyze hot keys:

• Method 1: Analyze the service structure and service implementation to discover possible hot keys.

For example, hot keys can be easily found in the service code during flash sales or user logins.

Advantage: Simple and easy to implement.

Disadvantage: Requires familiarity with the service code. In addition, the analysis become more difficult as the service scenarios become more complex.

- Method 2: Collect key access statistics in the client code to discover hot keys. Disadvantage: Requires intrusive code modification.
- Method 3: Capture and analyze packets.
 Advantage: Simple and easy to implement.

14.8.5 How Do I Detect Big Keys and Hot Keys in Advance?

Method	Description
Through Big Key Analysis and Hot Key Analysis on the DCS console	See Analyzing Big Keys and Hot Keys.

Method	Description		
By using the bigkeys and hotkeys options on redis- cli	 redis-cli uses the bigkeys option to traverse all keys in a Redis instance and returns the overall key statistics and the biggest key of six data types: Strings, Lists, Hashes, Sets, Zsets, and Streams. The command is redis-cli -h connection address> -p		
	 In Redis 4.0 and later, you can use the hotkeys option to quickly find hot keys in redis-cli. Run this command during service running to find hot keys: redis-cli -h -p <port number=""> -a <password>hotkeys. The hot key details can be obtained from the summary part in the returned result.</password></port> 		

Hot key analysis is not supported by DCS Redis 3.0 instances. You can **configure alarms** to detect hot keys.

• Configure alarm rules for the **Memory Usage** metric of the instance nodes.

If a node has a big key, the memory usage of the node is much higher than that of other nodes. In this case, an alarm is triggered to help you find the potentially problematic key.

• Configure alarm rules for the Maximum Inbound Bandwidth, Maximum Outbound Bandwidth, and CPU Usage metrics of the instance nodes.

If a node has a hot key, the bandwidth and CPU usage of the node is much higher than that of other nodes. In this case, an alarm is triggered to help you find the potentially problematic key.

14.8.6 How Does DCS Delete Expired Keys?

Question

What are the rules for scheduled deletion of expired keys on a daily basis? Can I customize the rules?

Mechanisms for Deleting Expired Keys

- Lazy free deletion: The deletion strategy is controlled in the main I/O event loop. Before a read/write command is executed, a function is called to check whether the key to be accessed has expired. If it has expired, it will be deleted and a response will be returned indicating that the key does not exist. If the key has not expired, the command execution resumes.
- Scheduled deletion: A time event function is executed at certain intervals.
 Each time the function is executed, a random collection of keys are checked, and expired keys are deleted.

D NOTE

To avoid prolonged blocks on the Redis main thread, not all keys are checked in each time event. Instead, a random collection of keys are checked each time. As a result, the memory used by expired keys cannot be released quickly.

Solutions

- Configure scheduled hot key analysis tasks by referring to **Hot Key Analysis**, or use the **SCAN** command to traverse all keys on a scheduled basis and remove expired keys from the memory.
- Configure a scheduled task to scan all master nodes of the instance. All keys will be scanned, and Redis will determine whether the keys have expired. Expired keys will be released. For details, see **Scanning Expired Keys**.

14.8.7 How Long Are Keys Stored? How Do I Set Key Expiration?

- Key storage duration
 - Keys that do not have an expiration are stored permanently.
 - Keys that have an expiration are deleted after they expire. For details, see Scanning Expired Keys.
 - To remove the expiration set for a key, run the **PERSIST** command.
- Setting key expiration

You can run the **EXPIRE** or **PEXPIRE** command to set the key expiration time. For example, if you run **expire key1 100**, key1 will expire in 100 seconds. If you run **pexpire key2 1800**, key2 will expire in 1800 milliseconds.

EXPIRE sets key expiration in seconds, and **PEXPIRE** sets key expiration in milliseconds.

14.9 Master/Standby Switchover

14.9.1 When Does a Master/Standby Switchover Occur?

A master/standby switchover may occur in the following scenarios:

- A master/standby switchover operation is initiated on the DCS Console.
- If the master node of a master/standby instance fails, a master/standby switchover will be triggered.

For example, running commands that consume a lot of resources, such as **KEYS** commands, will cause CPU usage to spike and as result triggers a master/standby switchover.

• If you restart a master/standby instance on the DCS console, a master/ standby switchover will be triggered.

After a master/standby switchover occurs, you will receive a notification. Check whether the client services are running properly. If not, check whether the TCP connection is normal and whether it can be re-established after the master/ standby switchover to restore the services.

14.9.2 How Does Master/Standby Switchover Affect Services?

If a fault occurs in a master/standby or cluster DCS instance, a failover is triggered automatically. Services may be interrupted for less than half a minute during exception detection and failover.

14.9.3 Does the Client Need to Switch the Connection Address After a Master/Standby Switchover?

No. If the master fails, the standby node will be promoted to master and takes the original IP address.

14.9.4 How Does Redis Master/Standby Replication Work?

Redis master/standby instances are also called master/slave instances. Generally, updates to the master cache node are automatically and asynchronously replicated to the standby cache node. This means that data in the standby cache node may not always be consistent with data in the master cache node. The inconsistency is typically seen when the I/O write speed of the master node is faster than the synchronization speed of the standby node or a network latency occurs between the master and standby nodes. If a failover happens when some data is not yet replicated to the standby node, such data may be lost after the failover.

14.10 Purchasing and Permissions

14.10.1 Why Do I Fail to Create a DCS Redis Instance?

• The subnet does not have sufficient IP addresses.

Analysis: Each node in a DCS instance must be assigned an IP address. Therefore, a single-node instance requires one IP address, a master/standby instance requires two IP addresses, and a cluster instance requires multiple IP addresses.

Solution: Create the instance in a different subnet within the VPC or release IP addresses in the current subnet.

• The IAM user does not have the permissions required to create an instance.

Analysis: The group to which the user belongs must be granted the **DCS FullAccess** policy or **DCS Administrator** role or other policies containing the permissions required for creating DCS instances.

Solution: Create a DCS instance as the administrator.

14.10.2 Why Can't I View the Subnet and Security Group Information When Creating a DCS Instance?

This may be because you do not have the **Server Administrator** and **VPC Administrator** roles. For details on how to add user permissions, see "Viewing or Modifying User Group Information" in the *Identity and Access Management User Guide*.

14.10.3 Why Can't I Select the Required Enterprise Project When Creating a DCS Instance?

Symptom

The desired enterprise project is not displayed during instance creation.

Enterprise Project	ProjectMan		C View Enterprise Project ⑦
	Search	Q	
Auto Backup	ProjectMan		

Cause

The user group does not have DCS permissions in the desired enterprise project.

Solution

- 1. Log in to the DCS console.
- 2. In the upper right corner, hover over the username and choose **Enterprise Management**.
- 3. On the displayed page, click **View Resource** in row containing the desired enterprise project.
- 4. On the **Permissions** tab page, click **Attach Permissions** in the row containing the desired user group.
- 5. Search for and select the **DCS FullAccess** policy, click **Next**, and click **OK**.

For more information about DCS permissions policies, see **Permissions**.

NOTE

If you configure both the **DCS UserAccess** (containing deny statements) and **DCS FullAccess** policies, you cannot create, modify, delete, or scale DCS instances because deny statements will take precedence. To perform the operations allowed by **DCS FullAccess**, delete **DCS UserAccess** first.

14.10.4 Why Can't an IAM User See a New DCS Redis Instance?

Symptom

An IAM user cannot see a newly purchased DCS Redis instance.

Possible Cause

The IAM user does not have permissions for the enterprise project to which the new instance belongs.

Solution

- 1. Log in to the DCS console.
- 2. In the upper right corner, hover over the username and choose **Enterprise Management**.
- 3. On the displayed page, click **View Resource** in row containing the desired enterprise project.
- 4. On the **Permissions** tab page, click **Attach Permissions** in the row containing the desired user group.
- 5. Select **DCS UserAccess** and click **OK**.

15 Troubleshooting

15.1 Troubleshooting Redis Connection Failures

Overview

This topic describes why Redis connection problems occur and how to solve the problems.

Problem Classification

To troubleshoot abnormal connections to a Redis instance, check the following items:

- Connection Between Redis and the ECS
- Public Access (Redis 3.0 Only)
- Password
- Instance Configuration
- Client Connections
- Bandwidth
- Redis Performance

Connection Between Redis and the ECS

The ECS where the client is located must be in the same VPC as the Redis instance and be able to communicate with the Redis instance.

• For a Redis 3.0 instance, check the security group rules of the instance and the ECS.

Correctly configure security group rules for the ECS and the Redis instance to allow the Redis instance to be accessed. For details, see **Security Group Configurations**.

 For a DCS Redis 4.0 or 5.0 instance, check the whitelist of the instance.
 If the instance has a whitelist, ensure that the client IP address is included in the whitelist. Otherwise, the connection will fail. For details, see Managing IP Address Whitelist. If the client IP address has changed, add the new IP address to the whitelist.

• Check the regions of the Redis instance and the ECS.

If the Redis instance and the ECS are not in the same region, create another Redis instance in the same region as the ECS and migrate data from the old instance to the new instance by referring to the **Data Migration Guide**.

• Check the VPCs of the Redis instance and the ECS.

Different VPCs cannot communicate with each other. An ECS cannot access a Redis instance if they are in different VPCs. You can establish VPC peering connections to allow the ECS to access the Redis instance across VPCs.

For details, see "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.

Public Access (Redis 3.0 Only)

Before accessing a Redis instance through a public network, ensure that the instance supports public access. For details, see the **public access explanation**.

- **Symptom**: "Error: Connection reset by peer" is displayed or a message is displayed indicating that the remote host forcibly closes an existing connection.
 - Possible cause 1: The security group is incorrectly configured.

Solution: Correctly configure the Redis instance and access the instance by following the **public access instructions**.

- Possible cause 2: Check whether the VPC subnet where Redis resides is associated with a network ACL and whether the network ACL denies outbound traffic. If yes, remove the ACL restriction.
- Possible cause 3: SSL encryption has been enabled, but Stunnel is not configured during connection. Instead, the IP address displayed on the console was used for connection.

Solution: When enabling SSL encryption, install and configure the Stunnel client. For details, see **Connecting to Redis with SSL Encryption**. In the command for connecting to the Redis instance, the address must be set to the IP address and port number of the Stunnel client. Do not use the public access address and port displayed on the console.

• **Symptom**: Public access has been automatically disabled.

Cause: The EIP bound to the DCS Redis instance is unbound. As a result, public access is automatically disabled.

Solution: Enable public access for the instance and bind an EIP to the instance on the management console. Then, try again.

Password

If the instance password is incorrect, the port can still be accessed but the authentication will fail. If you forget the password, you can **reset the password**.

Instance Configuration

If a connection to Redis is rejected, log in to the DCS console, go to the instance details page, and modify the **maxclients** parameter. For details, see **Modifying Configuration Parameters**.

Client Connections

• The connection fails when you use redis-cli to connect to a Redis Cluster instance.

Solution: Check whether **-c** is added to the connection command. Ensure that the correct connection command is used when connecting to the cluster nodes.

- Run the following command to connect to a Redis Cluster instance:
 - ./redis-cli -h {dcs_instance_address} -p 6379 -a {password} -c
- Run the following command to connect to a single-node, master/standby, or Proxy Cluster instance:

./redis-cli -h {dcs_instance_address} -p 6379 -a {password}

For details, see Accessing a DCS Redis Instance Through redis-cli.

- Error "Read timed out" or "Could not get a resource from the pool" occurs. **Solution**:
 - Check if the KEYS command has been used. This command consumes a lot of resources and can easily block Redis. Instead, use the SCAN command and avoid executing the command frequently.
 - Check if the DCS instance is Redis 3.0. Redis 3.0 uses SATA disks. During AOF persistence, the disk performance may occasionally deteriorate and cause a connection failure. In this case, disable AOF persistence if data persistence is not required. Alternatively, you can use a DCS Redis 4.0 or 5.0 instance because they use SSD disks that offer higher performance.
- Error "unexpected end of stream" occurs and causes service exceptions. **Solution**:
 - Optimize the Jedis connection pool by referring to Recommended Jedis Parameter Settings.
 - Check whether there are many big keys. For details, see How Do I Avoid Big Keys and Hot Keys?
- The connection is interrupted.

Solution:

- Modify the application timeout duration.
- Optimize the service to avoid slow queries.
- Replace the **KEYS** command with the **SCAN** command.
- If an error occurs when you use the Jedis connection pool, see What Should I Do If an Error Is Returned When I Use the Jedis Connection Pool?

Bandwidth

If the bandwidth reaches the upper limit of the corresponding instance specifications, Redis connections may time out.

You can view the **Flow Control Times** metric to check whether the bandwidth has reached the upper limit.

Then, check whether the instance has big keys and hot keys. If a single key is too large or overloaded, operations on the key may occupy too many bandwidth resources. For details about big keys and hot keys, see **Analyzing Big Keys and Hot Keys**.

Redis Performance

Connections to an instance may become slow or time out if the CPU usage spikes due to resource-consuming commands such as **KEYS**, or too much memory is used because the expiration time is not set for the instance or expired keys remain in the memory. In these cases, do as follows:

- Use the **SCAN** command instead of the **KEYS** command, or disable the **KEYS** command.
- Check the monitoring data and configure alarm rules. For details, see **Configuring Alarm Rules for Critical Metrics**.

For example, you can view the **Memory Usage** and **Used Memory** metrics to keep track of the instance memory usage, and view the **Connected Clients** metric to determine whether the instance connections limit has been reached.

• Check whether the instance has big keys and hot keys.

For details about the operations of big key and hot key analysis, see **Analyzing Big Keys and Hot Keys**.

15.2 Troubleshooting High CPU Usage of a DCS Redis Instance

Symptom

The CPU usage of a Redis instance increases dramatically within a short period of time.

Possible Causes

- 1. The service QPS is high. In this case, refer to Checking QPS.
- 2. Resource-consuming commands, such as **KEYS**, were used. In this case, refer to **Locating and Disabling CPU-Intensive Commands**.
- 3. Redis rewrite was triggered. In this case, refer to Checking Redis Rewrite.

Checking QPS

On the **Cache Manager** page of the DCS console, click an instance to go to the instance details page. On the left menu, choose **Performance Monitoring** and then view the **Ops per Second** metric.

Locating and Disabling CPU-Intensive Commands

Resource-consuming commands (commands with time complexity O(N) or higher), such as **KEYS**, are used. Generally, the higher the time complexity, the

more resources a command uses. As a result, the CPU usage is high, and a master/ standby switchover can be easily triggered. For details about the time complexity of each command, visit the **Redis official website**. In this case, use the **SCAN** command instead or disable the **KEYS** command.

- **Step 1** On the **Performance Monitoring** page of the DCS console, locate the period when the CPU usage is high.
- **Step 2** Use the following methods to find the commands that consume a large number of resources.
 - Redis logs queries that exceed a specified execution duration. You can find the commands that consume a large number of resources by analyzing the slow queries and their execution duration. For details, see Viewing Redis Slow Queries.
 - Use the instance diagnosis function to analyze the execution duration percentage of different commands during the period when the CPU usage is high. For details, see **Diagnosing an Instance**.

Step 3 Resolve the problem.

- Evaluate and disable high-risk and high-consumption commands, such as **FLUSHALL**, **KEYS**, and **HGETALL**.
- Optimize services. For example, avoid frequent data sorting operations.
- (Optional) Perform the following operations to adjust instances based on service requirements:

Scale up the instance.

----End

Checking Redis Rewrite

AOF persistence, which is enabled by default for master/standby and cluster DCS Redis instances, takes place in the following scenarios:

- If a small amount of data is written and the AOF file is not large, AOF rewrite is performed from 02:00 to 04:00 in the morning every day, and CPU usage may suddenly spike during this period.
- When a large amount of data is written and the AOF file size exceeds the threshold (three to five times the DCS instance capacity), AOF rewrite is automatically triggered in the background regardless of the current time.

Redis rewrite is performed by running the **BGSAVE** or **BGREWRITEAOF** command, which may consume many CPU resources (see **the discussion**). **BGSAVE** and **BGREWRITEAOF** commands need to fork(), resulting in CPU usage spikes within a short period of time.

If persistence is not required, disable it by changing the value of **appendonly** to **no** on the **Instance Configuration** > **Parameters** page of the instance. However, if you disable persistence, data loss may occur due to a lack of data flushing to disk in extreme situations.

15.3 Troubleshooting High Memory Usage of a DCS Redis Instance

Symptom

Redis provides fast database services. If the memory is insufficient, keys may be frequently evicted, the response time may increase, and the QPS may be unstable, affecting service running. This is normal due to Redis functions (such as master/ replica replication and lazyfree). When the memory becomes full, scale up the instance or remove unnecessary data. Generally, you need to be alerted when the memory usage exceeds 95%.

Fault Locating

- Query the memory usage in a specified period. For details, see Viewing DCS Monitoring Metrics. Check whether the value of Memory Usage is close to 100% continuously.
- 2. If the values of **Evicted Keys** and **Maximum Command Latency** increase significantly during the period when the memory usage exceeds 95%, the memory is insufficient.

In this case, log in to the console and analyze **big keys** and **slow queries**. If no expiration is set for the instance, too much data will be stored in the instance, using up the memory.

If the memory of a Redis instance is full but there are not many keys, the output buffer may have occupied an excessive amount of memory.
 In this case, run the **redis-cli --bigkeys** command to scan for big keys after connecting to the instance using redis-cli. Then, run the **info** command to check the output buffer size.

Solution

- Check for big and hot keys.
 - You can analyze big keys and hot keys on the DCS console. For details, see Analyzing Big Keys and Hot Keys.
 - Use the **bigkeys** and **hotkeys** options on redis-cli.
 - redis-cli uses the **bigkeys** option to traverse all keys in a Redis instance and returns the overall key statistics and the biggest key of six data types: Strings, Lists, Hashes, Sets, Zsets, and Streams. The command is **redis-cli -h** *<Instance connection address>* -**p** *<Port number>* -**a** *<Password>* --bigkeys.

- In Redis 4.0 and later, you can use the **hotkeys** option to quickly find hot keys in redis-cli. Run this command during service running to find hot keys: **redis-cli -h** *<Instance connection address> -p <Port number> -a <Password> --hotkeys*. The hot key details can be obtained from the summary part in the returned result.
- Detect big keys and hot keys in advance.
 - Configure an alarm for node-level memory usage. For details, see Configuring Alarm Rules for Critical Metrics.

If a node has a big key, the memory usage of the node is much higher than that of other nodes. In this case, an alarm is triggered to help you find the problematic key.

 Configure alarms for node-level Maximum Inbound Bandwidth, Maximum Outbound Bandwidth, and CPU Usage. For details, see Configuring Alarm Rules for Critical Metrics.

If a node has a hot key, the bandwidth and CPU usage of the node is much higher than that of other nodes. In this case, an alarm is triggered to help you find the problematic key.

NOTE

You can use the preceding method to detect hot keys for DCS Redis 3.0 instances which do not support hot key analysis.

- Scan for expired keys and release them, or manually delete unnecessary keys.
- Other suggestions:
 - Keep the size of each String within 10 KB and the number of Hashes, Lists, Sets, or Zsets within 5000.
 - When naming keys, use the service name abbreviation as the prefix and do not use special characters such as spaces, line brakes, single or double quotation marks, and other escape characters.
 - Do not rely too much on Redis transactions.
 - The performance of short connections ("connect" in Redis terminology) is poor. Use clients with connection pools.
 - Do not enable data persistence if you use Redis just for caching and can tolerate data loss.
- If the instance memory usage remains high after you take the preceding measures, expand the instance specifications during off-peak hours. For details, see Modifying DCS Instance Specifications.

15.4 Troubleshooting High Bandwidth Usage of a DCS Redis Instance

Overview

Redis instances are close to application services, and therefore they process a large amount of data access requests and use network bandwidth. The maximum bandwidth varies depending on instance specifications. If the maximum limit is exceeded, data access performance of application services will be affected. This
section describes how to troubleshoot high bandwidth usage of a DCS Redis instance.

Procedure

Step 1 Check the bandwidth usage.

Check the bandwidth usage of an instance in a specified period. For details, see **Viewing DCS Monitoring Metrics**.

Generally, if the input and output flows increase rapidly and remain above 80% of the instance's maximum bandwidth, the bandwidth may become insufficient.

The following figure shows the bandwidth usage. Bandwidth usage = (Input flow + Output flow)/($2 \times Maximum bandwidth$) x 100%

Even if the bandwidth usage exceeds 100%, flow control may not necessarily be triggered and can be reflected on the **Flow Control Times** metric.

Even if the bandwidth usage is below 100%, flow control may still be triggered. The real-time bandwidth usage is reported once in every reporting period. Flow controls are checked every second. The traffic may surge within seconds and then fall back between reporting periods. By the time the bandwidth usage is reported, it may have already restored to the normal level.

Step 2 Optimize the bandwidth usage.

- The service access traffic may not match the expected bandwidth consumption, for example, the bandwidth usage growth trend is inconsistent with the QPS growth trend. If this happens, analyze whether the traffic increase is from read services or write services by checking the input flow and output flow metrics. If the bandwidth usage on a single node increases, use the cache analysis function to detect big keys by referring to Analyzing Big Keys and Hot Keys. Optimize big keys (keys larger than 10 KB). For example, split big keys, access big keys less frequently, or delete unnecessary big keys.
- 2. If the bandwidth usage is still high, scale up the instance to a larger memory size to carry more network traffic. For details, see **Modifying DCS Instance Specifications**.

D NOTE

Before the scale-up, you can create an instance to test whether the desired specifications can meet the service load requirements. After the test is complete, you can release the instance by referring to **Deleting DCS Instances**.

----End

15.5 Troubleshooting Data Migration Failures

When you use the console to migrate data, the migration may fail if you select an inappropriate migration scheme, the **SYNC** and **PSYNC** commands are not allowed on the source Redis instance, or the network between the source and target Redis instances is disconnected.

This section describes how to troubleshoot data migration failures on the DCS console.

Procedure

Step 1 Check the migration logs.

 If the following error information is displayed, the underlying resources are insufficient to support the migration task. In this case, contact technical support.
 create migration ecs failed, flavor

create migration ecs failed, flavor

- If the following error information is displayed, the **SYNC** and **PSYNC** commands are disabled on the source Redis instance. In this case, contact technical support to enable the commands. source redis unsupported command: psync
- **Step 2** Check whether you used the appropriate migration scheme. If you migrate data between DCS Redis instances, the source instance cannot be a higher version than the target instance.
- **Step 3** Check whether the **SYNC** and **PSYNC** commands are enabled on the source Redis instance and whether the underlying resources of the migration task are connected to the source and target Redis instances.

This operation is required only for online migration.

For online migration, the source and target Redis instances must be connected, and the **SYNC** and **PSYNC** commands must be enabled on the source Redis instance. Otherwise, the migration will fail.

• Check the network.

Check whether the source Redis instance, the target Redis instance, and the VMs used for the migration task are in the same VPC. If they are in different VPCs, create a VPC peering connection. For details, see "VPC Peering Connection" in the *Virtual Private Cloud User Guide*.

If they are in the same VPC, check the security group rules (for DCS Redis 3.0 instances) or whitelists (for DCS Redis 4.0/5.0/6.0 instances) to ensure that the IP addresses and ports of the Redis instances are accessible.

The source and target Redis instances must be accessible to the underlying VMs used for the migration task. For details about how to configure a security

group or whitelist, see **Security Group Configurations** and **Managing IP** Address Whitelist.

If the source and target Redis instances are on different clouds, create a Direct Connect connection.

• Check the commands.

By default, the **SYNC** and **PSYNC** commands are disabled by cloud vendors. To enable the commands, contact the O&M personnel of the cloud vendors.

- Migration within DCS:
 - By default, the SYNC and PSYNC commands can be used when selfhosted Redis is migrated to DCS.
 - During online migration between DCS instances in the same region under the same account, the SYNC and PSYNC commands are automatically enabled.
 - During online migration between DCS instances in different regions or under different accounts within a region, the SYNC and PSYNC commands are not automatically enabled, and online migration on the console cannot be used. You can migrate data using backup files instead.
- Migration from other cloud vendors to DCS:
 - Generally, cloud vendors disable the SYNC and PSYNC commands. If you want to use online migration, contact the O&M personnel of the source cloud vendor to enable the commands. For offline migration, you can import backup files.
 - If incremental migration is not required, you can perform full migration by referring to Online Full Migration of Redis from Another Cloud with redis-shake. This method does not depend on SYNC and PSYNC.
- **Step 4** Check the source Redis instance for big keys.

If the source Redis instances has big keys, split them into small keys before migration.

Step 5 Check the specifications of the target Redis instance and whether other tasks are being performed on the instance.

If the memory of the target Redis instance is smaller than the size of the data to be migrated, the memory will be used up during the migration and the migration will fail.

If a master/standby switchover is being performed on the target Redis instance, contact technical support to stop the master/standby switchover task and start it only after the data migration is completed.

Step 6 Check whether the migration task is performed correctly.

Check whether the IP address and the instance password are correct.

Step 7 Check the whitelist.

Step 8 If the fault persists, contact technical support.

----End

A Change History

Table A-1 Change history

Released On	Description
2023-06-06	DCS Redis 4.0 and 5.0 instances supported instance type changes. For details, see Modifying DCS Instance Specifications .
2023-03-09	This issue is the ninth official release, which incorporates the following changes:
	Added Comparing DCS Redis Instance Types.
	Added Restrictions and Public Access to a DCS Redis 3.0 Instance.
	Added Scanning Expired Keys and Data Migration Guide.
	Added some FAQs and other optimization.
2023-01-03	This issue is the eighth official release, which incorporates the following changes:
	Added Parameter Templates.
	Added description about Redis 6.0.
	Added Configuring SSL.
	 Added the auto-kill-timeout-lua-process parameters in Modifying Configuration Parameters.
	• Updated Creating a DCS Redis Instance.

Released On	Description
2022-10-19	This issue is the seventh official release, which incorporates the following changes:
	Connection Pool Selection and Recommended Jedis Parameter Settings
	Why Does a Key Disappear in Redis?
	Will Cached Data Be Retained After an Instance Is Restarted?
	How Do I View Current Concurrent Connections and Maximum Connections of a DCS Redis Instance?
	Why Is the Rejected Connections Metric Displayed?
	Why Is Flow Control Triggered? How Do I Handle It?
	Big/Hot Key Analysis and Expired Key Scan Added Troubleshooting .
2022-07-28	This issue is the sixth official release, which incorporates the following change:
	Added description about Proxy Cluster DCS Redis 4.0/5.0 instances in sections Proxy Cluster Redis and Redis 4.0 and 5.0 Instance Specifications.
	Added description about changing the number of replicas and the impact of specification modification in section Modifying DCS Instance Specifications .
2022-02-15	This issue is the fifth official release, which incorporates the following change:
	Added description about accessing an instance in different languages. For details, see Accessing an Instance.
2021-11-30	This issue is the fourth official release, which incorporates the following changes:
	Added billing description in section Billing .
2021-08-30	This issue is the third official release, which incorporates the following change:
	Added description about instance diagnosis in section Diagnosing an Instance .
2021-07-30	This issue is the second official release, which incorporates the following change:
	management in sections Permissions and Permissions Management.
2020-09-30	This issue is the first official release.