
Distributed Cache Service

Best Practices

Date 2024-09-30

Contents

1 Applications.. 1
1.1 Serializing Access to Frequently Accessed Resources... 1
1.2 Ranking with DCS... 6

2 Connections.. 10
2.1 Configuring Redis Client Retry... 10

3 Suggestions...17
3.1 DCS Usage... 17

Distributed Cache Service
Best Practices Contents

2024-09-30 ii

1 Applications

1.1 Serializing Access to Frequently Accessed Resources

Overview
Application Scenario

In monolithic deployment, you can use Java concurrency APIs such as
ReentrantLock or synchronized to implement mutual exclusion locks. This native
lock mechanism provided by Java ensures that multiple threads within a Java VM
process are executed concurrently and sequentially.

However, this mechanism may fail in multi-node deployment because a node's
lock only takes effect on threads in the Java VM where the node runs. For
example, the concurrency level in Internet seckills requires multiple nodes to run
at the same time. Assume that requests of two users arrive simultaneously on two
nodes. Although the requests can be processed simultaneously on the respective
nodes, an inventory oversold problem may still occur because the nodes use
different locks.

Solution

To serialize access to resources, ensure that all nodes use the same lock. This
requires a distributed lock.

The idea of a distributed lock is to provide a globally unique "thing" for different
systems to allocate locks. When a system needs a lock, it asks the "thing" for a
lock. In this way, different systems can obtain the same lock.

Currently, a distributed lock can be implemented using cache databases, disk
databases, or ZooKeeper.

Implementing distributed locks using DCS Redis instances has the following
advantages:

● Simple operation: Locks can be acquired and released by using simple
commands such as SET, GET, and DEL.

● High performance: Cache databases deliver higher read/write performance
than disk databases and ZooKeeper.

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 1

● High reliability: DCS supports both master/standby and cluster instances,
preventing single points of failure.

Implementing locks on distributed applications can avoid inventory oversold
problems and nonsequential access. The following describes how to implement
locks on distributed applications with Redis.

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:
If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see "Does
DCS Support Cross-VPC Access?" in Distributed Cache Service User Guide
> FAQs.

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see Direct Connect
User Guide.

● You have installed JDK1.8 (or later) and a development tool (Eclipse is used
as an example) on the client server, and downloaded the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run Eclipse on the server and create a Java project. Then, create a distributed lock
implementation class DistributedLock.java and a test class CaseTest.java for the
example code, and reference the Jedis client as a library to the project.

Sample code of DistributedLock.java:

package dcsDemo01;

import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.params.SetParams;

public class DistributedLock {
 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 private final String host = "192.168.0.220";
 private final int port = 6379;

 private static final String SUCCESS = "OK";

 public DistributedLock(){}

 /*
 * @param lockName Lock name
 * @param timeout Timeout for acquiring locks
 * @param lockTimeout Validity period of locks
 * @return Lock ID

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 2

https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 */
 public String getLockWithTimeout(String lockName, long timeout, long lockTimeout) {
 String ret = null;
 Jedis jedisClient = new Jedis(host, port);

 try {
 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String identifier = UUID.randomUUID().toString();
 String lockKey = "DLock:" + lockName;
 long end = System.currentTimeMillis() + timeout;

 SetParams setParams = new SetParams();
 setParams.nx().px(lockTimeout);

 while(System.currentTimeMillis() < end) {
 String result = jedisClient.set(lockKey, identifier, setParams);
 if(SUCCESS.equals(result)) {
 ret = identifier;
 break;
 }

 try {
 Thread.sleep(2);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {
 jedisClient.quit();
 jedisClient.close();
 }

 return ret;
 }

 /*
 * @param lockName Lock name
 * @param identifier Lock ID
 */
 public void releaseLock(String lockName, String identifier) {
 Jedis jedisClient = new Jedis(host, port);

 try {
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String lockKey = "DLock:" + lockName;
 if(identifier.equals(jedisClient.get(lockKey))) {
 jedisClient.del(lockKey);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {
 jedisClient.quit();
 jedisClient.close();
 }
 }
}

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 3

NO TICE

The code only shows how DCS implements access control using locks. During
actual implementation, deadlock and lock check also need to be considered.

Assume that 20 threads are used to seckill ten Mate 10 mobile phones. The
content of the test class CaseTest.java is as follows:
package dcsDemo01;
import java.util.UUID;

public class CaseTest {
 public static void main(String[] args) {
 ServiceOrder service = new ServiceOrder();
 for (int i = 0; i < 20; i++) {
 ThreadBuy client = new ThreadBuy(service);
 client.start();
 }
 }
}

class ServiceOrder {
 private final int MAX = 10;

 DistributedLock DLock = new DistributedLock();

 int n = 10;

 public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number
of mobile phones left: " + (--n) + "");
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 DLock.releaseLock("Mate 10", identifier);
 }
}

class ThreadBuy extends Thread {
 private ServiceOrder service;

 public ThreadBuy(ServiceOrder service) {
 this.service = service;
 }

 @Override
 public void run() {
 service.handleOder();
 }
}

Step 2 Configure the connection address, port number, and password of the DCS instance
in the example code file DistributedLock.java.

In DistributedLock.java, set host and port to the connection address and port
number of the instance. In the getLockWithTimeout and releaseLock methods,
set passwd to the instance access password.

Step 3 Comment out the lock part in the test class CaseTest. The following is an
example:

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 4

//The lock code is commented out in the test class:
public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 //Lock code
 //String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number of
mobile phones left: " + (--n) + "")
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 //Lock code
 //DLock.releaseLock("Mate 10", identifier);
}

Step 4 Compile and run a lock-free class. The purchases are disordered, as shown in the
following:
Processing order for user e04934ddThread-5
Processing order for user a4554180Thread-0
User a4554180Thread-0 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user b58eb811Thread-10
User b58eb811Thread-10 is allocated number 3 mobile phone. Number of mobile phones left: 7.
Processing order for user e8391c0eThread-19
Processing order for user 21fd133aThread-13
Processing order for user 1dd04ff4Thread-6
User 1dd04ff4Thread-6 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user e5977112Thread-3
Processing order for user 4d7a8a2bThread-4
User e5977112Thread-3 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 18967410Thread-15
User 18967410Thread-15 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user e4f51568Thread-14
User 21fd133aThread-13 is allocated number 5 mobile phone. Number of mobile phones left: 5.
User e8391c0eThread-19 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user d895d3f1Thread-12
User d895d3f1Thread-12 order failed.
Processing order for user 7b8d2526Thread-11
User 7b8d2526Thread-11 order failed.
Processing order for user d7ca1779Thread-8
User d7ca1779Thread-8 order failed.
Processing order for user 74fca0ecThread-1
User 74fca0ecThread-1 order failed.
User e04934ddThread-5 is allocated number 1 mobile phone. Number of mobile phones left: 9.
User e4f51568Thread-14 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user aae76a83Thread-7
User aae76a83Thread-7 order failed.
Processing order for user c638d2cfThread-2
User c638d2cfThread-2 order failed.
Processing order for user 2de29a4eThread-17
User 2de29a4eThread-17 order failed.
Processing order for user 40a46ba0Thread-18
User 40a46ba0Thread-18 order failed.
Processing order for user 211fd9c7Thread-9
User 211fd9c7Thread-9 order failed.
Processing order for user 911b83fcThread-16
User 911b83fcThread-16 order failed.
User 4d7a8a2bThread-4 is allocated number 8 mobile phone. Number of mobile phones left: 2.

Step 5 Add the lock code back to CaseTest, and compile and run the code. The following
shows sequential purchases:
Processing order for user eee56fb7Thread-16
User eee56fb7Thread-16 is allocated number 1 mobile phone. Number of mobile phones left: 9.
Processing order for user d6521816Thread-2
User d6521816Thread-2 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user d7b3b983Thread-19
User d7b3b983Thread-19 is allocated number 3 mobile phone. Number of mobile phones left: 7.

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 5

Processing order for user 36a6b97aThread-15
User 36a6b97aThread-15 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user 9a973456Thread-1
User 9a973456Thread-1 is allocated number 5 mobile phone. Number of mobile phones left: 5.
Processing order for user 03f1de9aThread-14
User 03f1de9aThread-14 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user 2c315ee6Thread-11
User 2c315ee6Thread-11 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 2b03b7c0Thread-12
User 2b03b7c0Thread-12 is allocated number 8 mobile phone. Number of mobile phones left: 2.
Processing order for user 75f25749Thread-0
User 75f25749Thread-0 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user 26c71db5Thread-18
User 26c71db5Thread-18 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user c32654dbThread-17
User c32654dbThread-17 order failed.
Processing order for user df94370aThread-7
User df94370aThread-7 order failed.
Processing order for user 0af94cddThread-5
User 0af94cddThread-5 order failed.
Processing order for user e52428a4Thread-13
User e52428a4Thread-13 order failed.
Processing order for user 46f91208Thread-10
User 46f91208Thread-10 order failed.
Processing order for user e0ca87bbThread-9
User e0ca87bbThread-9 order failed.
Processing order for user f385af9aThread-8
User f385af9aThread-8 order failed.
Processing order for user 46c5f498Thread-6
User 46c5f498Thread-6 order failed.
Processing order for user 935e0f50Thread-3
User 935e0f50Thread-3 order failed.
Processing order for user d3eaae29Thread-4
User d3eaae29Thread-4 order failed.

----End

1.2 Ranking with DCS

Overview
Ranking is a function commonly used on web pages and apps. It is implemented
by listing key-values in descending order. However, a huge number of concurrent
operation and query requests can result in a performance bottleneck, significantly
increasing latency.

Ranking using DCS for Redis provides the following advantages:

● Data is stored in the memory, so read/write is fast.
● Multiple types of data structures, such as strings, lists, sets, and hashes are

supported.

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 6

If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see "Does
DCS Support Cross-VPC Access?" in Distributed Cache Service User Guide
> FAQs.

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see Direct Connect
User Guide.

● You have installed JDK1.8 (or later) and a development tool (Eclipse is used
as an example) on the client server, and downloaded the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run Eclipse on the server. Choose File > New Project to create a Java project
named dcsDemo02.

Step 2 Choose New > Class to create a productSalesRankDemo.java file.

Step 3 Copy the following demo code to the productSalesRankDemo.java file.
package dcsDemo02;

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class productSalesRankDemo {
 static final int PRODUCT_KINDS = 30;

 public static void main(String[] args) {
 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 String host = "192.168.0.246";
 int port = 6379;

 Jedis jedisClient = new Jedis(host, port);

 try {
 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("******");
 if (!authMsg.equals("OK")) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 //Key
 String key = "Best-seller Rankings";

 jedisClient.del(key);

 //Generate product data at random
 List<String> productList = new ArrayList<>();
 for(int i = 0; i < PRODUCT_KINDS; i ++) {
 productList.add("product-" + UUID.randomUUID().toString());
 }

 //Generate sales volume at random
 for(int i = 0; i < productList.size(); i ++) {
 int sales = (int)(Math.random() * 20000);

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 7

https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 String product = productList.get(i);
 //Insert sales volume into Redis SortedSet
 jedisClient.zadd(key, sales, product);
 }

 System.out.println();
 System.out.println(" "+key);

 //Obtain all lists and display the lists by sales volume
 Set<Tuple> sortedProductList = jedisClient.zrevrangeWithScores(key, 0, -1);
 for(Tuple product : sortedProductList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }

 System.out.println();
 System.out.println(" "+key);
 System.out.println(" Top 5 Best-sellers");

 //Obtain the top 5 best-selling products and display the products by sales volume
 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key, 0, 4);
 for(Tuple product : sortedTopList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 jedisClient.quit();
 jedisClient.close();
 }
 }

}

Step 4 Configure the connection address, port, and password for the DCS instance in the
example code file.

Step 5 Compile and run the code.

----End

Operation Result
Compile and run the preceding Demo code. The operation result is as follows:

Best-seller Rankings
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334
Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842
Product ID: product-d0c364e0-66ec-48a8-9ac9-4fb58adfd033, Sales volume: 17782
Product ID: product-5e406bbf-47c7-44a9-965e-e1e9b62ed1cc, Sales volume: 17093
Product ID: product-0c4d31ee-bb15-4c88-b319-a69f74e3c493, Sales volume: 16432
Product ID: product-a986e3a4-4023-4e00-8104-db97e459f958, Sales volume: 16380
Product ID: product-a3ac9738-bed2-4a9c-b96a-d8511ae7f03a, Sales volume: 15305
Product ID: product-6b8ad4b7-e134-480f-b3ae-3d35d242cb53, Sales volume: 14534
Product ID: product-26a9b41b-96b1-4de0-932b-f78d95d55b2d, Sales volume: 11417
Product ID: product-1f043255-a1f9-40a0-b48b-f40a81d07e0e, Sales volume: 10875
Product ID: product-c8fee24c-d601-4e0e-9d18-046a65e59835, Sales volume: 10521
Product ID: product-5869622b-1894-4702-b750-d76ff4b29163, Sales volume: 10271
Product ID: product-ff0317d2-d7be-4021-9d25-1f997d622768, Sales volume: 9909
Product ID: product-da254e81-6dec-4c76-928d-9a879a11ed8d, Sales volume: 9504
Product ID: product-fa976c02-b175-4e82-b53a-8c0df96fe877, Sales volume: 8630
Product ID: product-0624a180-4914-46b9-84d0-9dfbbdaa0da2, Sales volume: 8405

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 8

Product ID: product-d0079955-eaea-47b2-845f-5ff05a110a70, Sales volume: 7930
Product ID: product-a53145ef-1db9-4c4d-a029-9324e7f728fe, Sales volume: 7429
Product ID: product-9b1a1fd1-7c3b-4ae8-9fd3-ab6a0bf71cae, Sales volume: 5944
Product ID: product-cf894aee-c1cb-425e-a644-87ff06485eb7, Sales volume: 5252
Product ID: product-8bd78ba8-f2c4-4e5e-b393-60aa738eceae, Sales volume: 4903
Product ID: product-89b64402-c624-4cf1-8532-ae1b4ec4cabc, Sales volume: 4527
Product ID: product-98b85168-9226-43d9-b3cf-ef84e1c3d75f, Sales volume: 3095
Product ID: product-0dda314f-22a7-464b-ab8c-2f8f00823a39, Sales volume: 2425
Product ID: product-de7eb085-9435-4924-b6fa-9e9fe552d5a7, Sales volume: 1694
Product ID: product-9beadc07-aab0-438c-ac5e-bcc72b9d9c36, Sales volume: 1135
Product ID: product-43834316-4aca-4fb2-8d2d-c768513015c5, Sales volume: 256

 Best-seller Rankings
 Top 5 Best-sellers
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334
Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842

Distributed Cache Service
Best Practices 1 Applications

2024-09-30 9

2 Connections

2.1 Configuring Redis Client Retry

Importance of Retry
Both the client and server may encounter temporary faults (such as transient
network or disk jitter, service unavailability, or invoking timeout, due to
infrastructure or running environment reasons). As a result, Redis operations may
fail. You can design automated retry mechanisms to reduce the impact of such
faults and ensure successful execution.

Scenarios Where Redis Operations Fail

Scenario Description

Master/standby
switchover
triggered by a
fault

If the master node is faulty due to Redis underlying
hardware or other reasons, a master/standby switchover is
triggered to ensure that the instance is still available. A
master/standby switchover has the following impacts:
● Instance disconnection down to seconds
● Read-only for 30s at most

Read-only during
specification
modification

During specification modification, the instance may be
disconnected for seconds and read-only for minutes.
For more information about the impact of specification
modification, see section "Modifying Specifications" in the
Distributed Cache Service User Guide.

Request blockage
caused by slow
queries

Operations whose time complexity is O(N) cause slow
queries and request blockage. In this case, other client
requests may temporarily fail.

Complex network
environment

Due to the complex network environment between the
client and the Redis server, network jitter, packet loss, and
data retransmission may occur occasionally. In this case,
client requests may temporarily fail.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 10

Scenario Description

Complex hardware
issues

Client requests may temporarily fail due to occasional
hardware faults, such as VM HA and disk latency jitter.

Recommended Retry Rules
Retry Rule Description

Retry only
idempotent
operations.

Timeout may occur in any of the following phases:
● A command is successfully sent by the client but has

not reached Redis.
● The command has reached Redis, but the execution

times out.
● Redis has executed the command, but the result

returned to the client times out.
A retried operation may be repeatedly executed in Redis.
Therefore, not all operations are suitable to be retried. You
are advised to retry only idempotent operations, such as
running the SET command. For example, if you run the
SET a b command multiple times, the value of a can only
be b or the execution fails. If you run LPUSH mylist a,
which is not idempotent, mylist may contain multiple a
elements.

Configure proper
retry times and
interval.

Configure the retry times and interval based on service
requirements in actual scenarios to prevent the following
problems:
● If the number of retries is insufficient or the interval is

too long, the application may fail to complete
operations.

● If the number of retries is too large or the interval is
too short, the application may occupy too many system
resources and the server may be blocked due to too
many requests.

Common retry interval policies include immediate retry,
fixed-interval retry, exponential backoff retry, and random
backoff retry.

Avoid retry
nesting.

Retry nesting may cause the retry interval to be
exponentially amplified.

Record retry
exceptions and
print failure
reports.

During retry, you can print retry error logs at the WARN
level.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 11

Jedis Client Retry Configurations
● Retries are not supported in native JedisPool mode (for single-node, master/

standby, and Proxy Cluster instances). However, you can implement retries by
referring to JedisClusterCommand.

● Retries are supported in JedisCluster mode. You can set the maxAttempts
parameter to define the number of retry times when a failure occurs. The
default value is 5. By default, all JedisCluster operations invoke the retry
method.
Example code:
@Bean
JedisCluster jedisCluster() {
 Set<HostAndPort> hostAndPortsSet = new HashSet<>();
 hostAndPortsSet.add(new HostAndPort("{dcs_instance_address}", 6379));
 JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
 jedisPoolConfig.setMaxIdle(100);
 jedisPoolConfig.setMinIdle(1);
 jedisPoolConfig.setMaxTotal(1000);
 jedisPoolConfig.setMaxWaitMilis(2000);
 jedisPoolConfig.setMaxAttempts(5);
 return new JedisCluster(hostAndPortsSet, jedisPoolConfig);
}

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 12

https://github.com/redis/jedis/blob/v3.7.0/src/main/java/redis/clients/jedis/JedisClusterCommand.java

Table 2-1 Recommended Jedis connection pool parameter settings

Parameter Description Recommended Setting

maxTotal Maximum number of
connections

Set this parameter based
on the number of HTTP
threads of the web
container and reserved
connections. Assume
that the
maxConnections
parameter of the Tomcat
Connector is set to 150
and each HTTP request
may concurrently send
two requests to Redis,
you are advised to set
this parameter to at
least 400 (150 x 2 +
100).
Limit: The value of
maxTotal multiplied by
the number of client
nodes (CCE containers or
service VMs) must be
less than the maximum
number of connections
allowed for a single DCS
Redis instance.
For example, if
maxClients of a master/
standby DCS Redis
instance is 10,000 and
maxTotal of a single
client is 500, the
maximum number of
clients is 20.

maxIdle Maximum number of
idle connections

Use the same
configuration as
maxTotal.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 13

Parameter Description Recommended Setting

minIdle Minimum number of idle
connections

Generally, you are
advised to set this
parameter to 1/X of
maxTotal. For example,
the recommended value
is 100.
In performance-sensitive
scenarios, you can set
this parameter to the
value of maxIdle to
prevent the impact
caused by frequent
connection quantity
changes. For example,
set this parameter to
400.

maxWaitMillis Maximum waiting time
for obtaining a
connection, in
milliseconds

The recommended
maximum waiting time
for obtaining a
connection from the
connection pool is the
maximum tolerable
timeout of a single
service minus the
timeout for command
execution. For example,
if the maximum
tolerable HTTP failure is
15s and the timeout of
Redis requests is 10s, set
this parameter to 5s.

timeout Command execution
timeout, in milliseconds

This parameter indicates
the maximum timeout
for running a Redis
command. Set this
parameter based on the
service logic. You are
advised to set this
timeout to least 210 ms
to ensure network fault
tolerance. For special
detection logic or
environment exception
detection, you can adjust
this timeout to seconds.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 14

Parameter Description Recommended Setting

minEvictableIdleTimeMil-
lis

Idle connection eviction
time, in milliseconds. If a
connection is not used
for a period longer than
this, it will be released.

If you do not want the
system to frequently re-
establish disconnected
connections, set this
parameter to a large
value (xx minutes) or set
this parameter to –1 and
check idle connections
periodically.

timeBetweenEviction-
RunsMillis

Interval for detecting idle
connections, in
milliseconds

The value is estimated
based on the number of
idle connections in the
system. For example, if
this interval is set to 30s,
the system detects
connections every 30s. If
an abnormal connection
is detected within 30s, it
will be removed. Set this
parameter based on the
number of connections.
If the number of
connections is too large
and this interval is too
short, request resources
will be wasted. If there
are hundreds of
connections, you are
advised to set this
parameter to 30s. The
value can be dynamically
adjusted based on
system requirements.

testOnBorrow Indicates whether to
check the connection
validity using the ping
command when
borrowing connections
from the resource pool.
Invalid connections will
be removed.

If your service is
extremely sensitive to
connections and the
performance is
acceptable, you can set
this parameter to True.
Generally, you are
advised to set this
parameter to False to
enable idle connection
detection.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 15

Parameter Description Recommended Setting

testWhileIdle Indicates whether to use
the ping command to
monitor the connection
validity during idle
resource monitoring.
Invalid connections will
be destroyed.

True

testOnReturn Indicates whether to
check the connection
validity using the ping
command when
returning connections to
the resource pool. Invalid
connections will be
removed.

False

maxAttempts Number of connection
retries when JedisCluster
is used

Recommended value: 3–
5. Default value: 5.
Set this parameter based
on the maximum
timeout intervals of
service APIs and a single
request. The maximum
value is 10. If the value
exceeds 10, the
processing time of a
single request is too
long, blocking other
requests.

Distributed Cache Service
Best Practices 2 Connections

2024-09-30 16

3 Suggestions

3.1 DCS Usage

Service Usage
Principle Description Remarks

Separate hot data
from cold data.

You can store frequently
accessed data (hot data) in
Redis, and infrequently
accessed data (cold data) in
databases such as MySQL and
Elasticsearch.

Infrequently accessed data
stored in the memory
occupies Redis space and
does not accelerate
access.

Differentiate
service data.

Store unrelated service data in
different Redis instances.

This prevents services
from affecting each other
and prevents single
instances from being too
large. This also enables
you to quickly restore
services in case of faults.

Do not use the SELECT
command for multi-DB on a
single instance.

Multi-DB on a single Redis
instance does not provide
good isolation and is no
longer in active
development by open-
source Redis. You are
advised not to depend on
this feature in the future.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 17

Principle Description Remarks

Set a proper
eviction policy.

If the eviction policy is set
properly, Redis can still
function when the memory is
used up unexpectedly.

You can that meets your
service requirements.You
can select a policy that
meets your service
requirements by
configuring the
maxmemory-policy
parameter. For details, see
section "Modifying
Configuration Parameters"
in the Distributed Cache
Service User Guide.

Use Redis as
cache.

Do not over-rely on Redis
transactions.

After a transaction is
executed, it cannot be
rolled back.

If data is abnormal, clear the
cache for data restoration.

Redis does not have a
mechanism or protocol to
ensure strong data
consistency. Therefore,
services cannot over-rely
on the accuracy of Redis
data.

When using Redis as cache, set
expiration on all keys. Do not
use Redis as a database.

Set expiration as required,
but a longer expiration is
not necessarily better.

Prevent cache
breakdown.

Use Redis together with local
cache. Store frequently used
data in the local cache and
regularly update it
asynchronously.

-

Prevent cache
penetration.

Non-critical path operations
are passed through to the
database. Limit the rate of
access to the database.

-

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 18

Principle Description Remarks

Do not use Redis
as a message
queue.

In pub/sub scenarios, do not
use Redis as a message queue.

● Unless otherwise
required, you are not
advised to use Redis as
a message queue.

● Using Redis as a
message queue causes
capacity, network,
performance, and
function issues.

● If message queues are
required, use Kafka for
throughput and
RocketMQ for
reliability.

Select proper
specifications.

If service growth causes
increases in Redis requests, use
Proxy Cluster or Redis Cluster
instances.

Scaling up single-node
and master/standby
instances only expands
the memory and
bandwidth, but cannot
enhance the computing
capabilities.

In production, do not use
single-node instances. Use
master/standby or cluster
instances.

-

Do not use large specifications
for master/standby instances.

Redis forks a process
when rewriting AOF or
running the BGSAVE
command. If the memory
is too large, responses will
be slow.

Prepare for
degradation or
disaster recovery.

When a cache miss occurs,
data is obtained from the
database. Alternatively, when a
fault occurs, allow another
Redis to take over services
automatically.

-

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 19

Data Design
Categor
y

Principle Description Remarks

Keys Keep the format
consistent.

Use the service name
or database name as
the prefix, followed by
colons (:). Ensure that
key names have clear
meanings.

For example: service
name:sub-service
name:ID.

Minimize the key
length.

Minimize the key
length without
compromising clarity of
the meaning.
Abbreviate common
words. For example,
user can be
abbreviated to u, and
messages can be
abbreviated to msg.

Use up to 128 bytes.
The shorter the better.

Do not use
special
characters except
braces ({}).

Do not use special
characters such as
spaces, line brakes,
single or double
quotation marks, and
other escape
characters.

Redis uses braces ({})
to signify hash tags.
Braces in key names
must be used correctly
to avoid unbalanced
shards.

Values Use appropriate
value sizes.

Keep the value of a key
within 10 KB.

Large values may cause
unbalanced shards, hot
keys, traffic or CPU
usage surges, and
scaling or migration
failures. These
problems can be
avoided by proper
design.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 20

Categor
y

Principle Description Remarks

Use appropriate
number of
elements in each
key.

Do not include too
many elements in each
Hash, Set, or List. It is
recommended that
each key contain up to
5000 elements.

Time complexity of
some commands, such
as HGETALL, is directly
related to the quantity
of elements in a key. If
commands whose time
complexity is O(N) or
higher are frequently
executed and a key has
a large number of
elements, there may be
slow requests,
unbalanced shards, or
hot keys.

Use appropriate
data types.

This saves memory and
bandwidth.

For example, to store
multiple attributes of a
user, you can use
multiple keys, such as
set u:1:name "X" and
set u:1:age 20. To save
memory usage, you can
also use the HMSET
command to set
multiple fields to their
respective values in the
hash stored at one key.

Set appropriate
timeout.

Do not set a large
number of keys to
expire at the same
time.

When setting key
expiration, add or
subtract a random
offset from a base
expiry time, to prevent
a large number of keys
from expiring at the
same time. Otherwise,
CPU usage will be high
at the expiry time.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 21

Command Usage
Principle Description Remarks

Exercise caution
when using
commands with
time complexity
of O(N).

Pay attention to the value of N
for commands whose time
complexity is O(N). If the value
of N is too large, Redis will be
blocked and the CPU usage
will be high.

For example, the
HGETALL, LRANGE,
SMEMBERS, ZRANGE,
and SINTER commands
will consume a large
number of CPU resources
if there is a large number
of elements. Alternatively,
you can use SCAN sister
commands, such as
HSCAN, SSCAN, and
ZSCAN commands.

Do not use high-
risk commands.

Do not use high-risk
commands such as FLUSHALL,
KEYS, and HGETALL, or
rename them.

For details, see section
"Renaming Commands" in
the User Guide.

Exercise caution
when using the
SELECT
command.

Redis does not have a strong
support for multi-DB. Redis is
single-threaded, so databases
interfere with each other. You
are advised to use multiple
Redis instances instead of
using multi-DB on one
instance.

-

Use batch
operations to
improve
efficiency.

For batch operations, use the
MGET command, MSET
command, or pipelining to
improve efficiency, but do not
include a large number of
elements in one batch
operation.

MGET command, MSET
command, and pipelining
differ in the following
ways:
● MGET and MSET are

atomic operations,
while pipelining is not.

● Pipelining can be used
to send multiple
commands at a time,
while MGET and MSET
cannot.

● Pipelining must be
supported by both the
server and the client.

Do not use time-
consuming code
in Lua scripts.

The timeout of Lua scripts is
5s, so avoid using long scripts.

Long scripts: time-
consuming sleep
statements or long loops.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 22

Principle Description Remarks

Do not use
random functions
in Lua scripts.

When invoking a Lua script, do
not use random functions to
specify keys. Otherwise, the
execution results will be
inconsistent between the
master and standby nodes,
causing data inconsistency.

-

Follow the rules
for using Lua on
cluster instances.

Follow the rules for using Lua
on cluster instances.

● When the EVAL or
EVALSHA command is
run, the command
parameter must
contain at least one
key. Otherwise, the
client displays the error
message "ERR eval/
evalsha numkeys must
be bigger than zero in
redis cluster mode."

● When the EVAL or
EVALSHA command is
run, a cluster DCS
Redis instance uses the
first key to compute
slots. Ensure that the
keys to be operated are
in the same slot.

Optimize multi-
key operation
commands such
as MGET and
HMGET with
parallel
processing and
non-blocking I/O.

Some clients do not treat these
commands differently. Keys in
such a command are processed
sequentially before their values
are returned in a batch. This
process is slow and can be
optimized through pipelining.

For example, running the
MGET command on a
cluster using Lettuce is
dozens of times faster
than using Jedis, because
Lettuce uses pipelining
and non-blocking I/O
while Jedis does not have
a special plan itself. To use
Jedis in such scenarios,
you need to implement
slot grouping and
pipelining by yourself.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 23

Principle Description Remarks

Do not use the
DEL command to
directly delete big
keys.

Deleting big keys, especially
Sets, using DEL blocks other
requests.

In Redis 4.0 and later, you
can use the UNLINK
command to delete big
keys safely. This command
is non-blocking.
In versions earlier than
Redis 4.0:
● To delete big Hashes,

use HSCAN + HDEL
commands.

● To delete big Lists, use
the LTRIM command.

● To delete big Sets, use
SSCAN + SREM
commands.

● To delete big Sorted
Sets, use ZSCAN +
ZREM commands.

SDK Usage
Principle Description Remarks

Use connection
pools and
persistent
connections
("pconnect" in
Redis
terminology).

The performance of short
connections ("connect" in
Redis terminology) is poor. Use
clients with connection pools.

Frequently connecting to
and disconnecting from
Redis will unnecessarily
consume a lot of system
resources and can cause
host breakdown in
extreme cases. Ensure that
the Redis client
connection pool is
correctly configured.

The client must
perform fault
tolerance in case
of faults or slow
requests.

The client should have fault
tolerance and retry
mechanisms in case of master/
standby switchover, command
timeout, or slow requests
caused by network fluctuation
or configuration errors.

See Configuring Redis
Client Retry.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 24

Principle Description Remarks

Set appropriate
interval and
number of retries.

Do not set the retry interval
too short or too long.

● If the retry interval is
very short, for example,
shorter than 200
milliseconds, a retry
storm may occur, and
can easily cause service
avalanche.

● If the retry interval is
very long or the
number of retries is set
to a large value, the
service recovery may
be slow in the case of
a master/standby
switchover.

Avoid using
Lettuce.

Lettuce is the default client of
Spring and stands out in terms
of performance. However, Jedis
is more stable because it is
better at detecting and
handling connection errors and
network fluctuations.
Therefore, Jedis is
recommended.

Lettuce has the following
problems:
● By default, Lettuce

does not have cluster
topology update
configurations. When
the cluster topology
changes (for example
after a master/standby
switchover or scaling),
new nodes cannot be
identified, causing
service failures.

● Lettuce cannot validate
connections in the
connection pool. If an
invalid connection is
used, services will fail.

O&M and Management
Principle Description Remarks

Use passwords in
production.

In production systems, use
passwords to protect Redis.

-

Ensure security
on the live
network.

Do not allow unauthorized
developers to connect to redis-
server in the production
environment.

-

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 25

Principle Description Remarks

Verify the fault
handling
capability of the
service.

Organize drills in the test
environment or pre-production
environment to verify service
reliability in Redis master/
standby switchover,
breakdown, or scaling
scenarios.

Master/standby
switchover can be
triggered manually on the
console. It is strongly
recommended that you
use Lettuce for these
drills.

Configure
monitoring.

Pay attention to the Redis
capacity and expand it before
overload.

Configure CPU, memory,
and bandwidth alarms
based on the alarm
thresholds.

Distributed Cache Service
Best Practices 3 Suggestions

2024-09-30 26

	Contents
	1 Applications
	1.1 Serializing Access to Frequently Accessed Resources
	1.2 Ranking with DCS

	2 Connections
	2.1 Configuring Redis Client Retry

	3 Suggestions
	3.1 DCS Usage

